Collins R, Jinuntuya N, Petpirom P, Wasuwanich S
Wright State University, Department of Biomedical Engineering, Dayton, Ohio 45435, USA.
Ann N Y Acad Sci. 1998 Sep 11;858:116-26. doi: 10.1111/j.1749-6632.1998.tb10146.x.
New mathematical models are formulated and analytical solutions are presented for the diffusional release of a solute from both non-erodible and biodegradable multi-layered slab matrices in which the initial drug loading c0 is greater than the solubility limit cs. A Stefan problem with moving boundaries results from this formulation. An inward moving diffusional front separates the reservoir (unextracted region) containing the undissolved drug from the partially extracted region. The cumulative mass released is determined as a function of time. The ultimate goal of such an investigation is to provide a reliable design tool for the fabrication of specialized implantable capsule/drug combinations to deliver prespecified and reproducible dosages over a wide spectrum of conditions and required durations of therapeutic treatment. Such a mathematical/computational tool may also prove effective in the prediction of suitable dosages for other drugs of differing chemical or molecular properties without additional elaborate animal testing.
针对溶质从不可蚀和可生物降解的多层平板基质中的扩散释放,建立了新的数学模型并给出了解析解,其中初始药物负载量c0大于溶解度极限cs。由此公式产生了一个具有移动边界的斯蒂芬问题。向内移动的扩散前沿将含有未溶解药物的储库(未提取区域)与部分提取区域分开。累积释放质量被确定为时间的函数。此类研究的最终目标是提供一种可靠的设计工具,用于制造专门的可植入胶囊/药物组合,以便在广泛的条件和所需治疗持续时间内递送预先指定且可重复的剂量。这种数学/计算工具在预测具有不同化学或分子性质的其他药物的合适剂量时,可能无需额外复杂的动物试验也会证明是有效的。