Long QT syndrome (LQT) is an electrophysiological disorder that can lead to sudden death from cardiac arrhythmias. One form of LQT has been attributed to mutations in the human ether-a-go-go-related gene (HERG) that encodes a voltage-gated cardiac K+ channel. While a recent report indicates that LQT in some patients is associated with a mutation of HERG at a consensus extracellular N-linked glycosylation site (N629), earlier studies failed to identify a role for N-linked glycosylation in the functional expression of voltage-gated K+ channels. In this study we used pharmacological agents and site-directed mutagenesis to assess the contribution of N-linked glycosylation to the surface localization of HERG channels. 2. Tunicamycin, an inhibitor of N-linked glycosylation, blocked normal surface membrane expression of a HERG-green fluorescent protein (GFP) fusion protein (HERGGFP) transiently expressed in human embryonic kidney (HEK 293) cells imaged with confocal microscopy. 3. Immunoblot analysis revealed that N-glycosidase F shifted the molecular mass of HERGGFP, stably expressed in HEK 293 cells, indicating the presence of N-linked carbohydrate moieties. Mutations at each of the two putative extracellular N-linked glycosylation sites (N598Q and N629Q) led to a perinuclear subcellular localization of HERGGFP stably expressed in HEK 293 cells, with no surface membrane expression. Furthermore, patch clamp analysis revealed that there was a virtual absence of HERG current in the N-glycosylation mutants. 4. Taken together, these results strongly suggest that N-linked glycosylation is required for surface membrane expression of HERG. These findings may provide insight into a mechanism responsible for LQT2 due to N-linked glycosylation-related mutations of HERG.