Suppr超能文献

Role of carboxyl-terminal charges on S-modulin membrane affinity and inhibition of rhodopsin phosphorylation.

作者信息

Matsuda S, Hisatomi O, Tokunaga F

机构信息

Department of Earth and Space Science, Graduate School of Science, Osaka University, Machikaneyama-chyo 1-1, Toyonaka, Osaka 560-0043, Japan.

出版信息

Biochemistry. 1999 Jan 26;38(4):1310-5. doi: 10.1021/bi982117u.

Abstract

S-Modulin shows a higher affinity for urea-stripped frog rod outer segment membranes than s26 (a cone homologue of S-modulin). NaCl at a concentration of several hundred millimolar reduced the membrane affinity of S-modulin to the s26 level. Chimeric S-modulin and s26 whose respective 23 and 29 amino acids at the carboxyl terminus were swapped showed membrane affinites similar to those of s26 and S-modulin, respectively. The membrane affinity of an S-modulin mutant lacking C-terminal positive charges was reduced to the s26 level, while another S-modulin mutant lacking C-terminal negative charges has a higher membrane affinity than wild-type S-modulin. When the molar ratio of recombinant S-modulins to rhodopsin is 0.5, there was no large difference in the inhibition efficiency. However, S-modulin and mutants with high membrane affinities inhibit rhodopsin phosphorylation more efficiently than s26 and mutants with low membrane affinities at the molar ratio of 0.1. These results indicate that the C-terminal positive charges of these Ca2+-binding proteins enhance the membrane affinity and the inhibitory effect on rhodopsin phosphorylation by increasing the concentration of S-modulin on the membrane.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验