Mizoue L S, Bazan J F, Johnson E C, Handel T M
Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
Biochemistry. 1999 Feb 2;38(5):1402-14. doi: 10.1021/bi9820614.
Fractalkine, a novel CX3C chemokine, is unusual because of both its membrane-associated structure and its direct role in cell adhesion. We have solved the solution structure of the chemokine domain of fractalkine (residues 1-76) by heteronuclear NMR methods. The 20 lowest energy structures in the ensemble have an average backbone rmsd of 0.43 A, excluding the termini. In contrast to many other chemokines which form homodimers, fractalkine's chemokine module is monomeric. Comparison of the structure to CC and CXC chemokines reveals interesting differences which are likely to be relevant to receptor binding. These include a bulge formed by the CX3C motif, the relative orientation of the N-terminus and 30's loop (residues 30-38), and the conformation of the N-loop (residues 9-19). 15N backbone relaxation experiments indicate that these same regions of the protein are dynamic. We also titrated 15N-labeled protein with a peptide from the N-terminus of the receptor CX3CR1 and confirmed that this region of the receptor contacts the fractalkine chemokine domain. Interestingly, the binding site maps roughly to the regions of greatest flexibility and structural variability. Together, these data provide a first glimpse of how fractalkine interacts with its receptor and should help guide mutagenesis studies to further elucidate the molecular details of binding and signaling through CX3CR1.
趋化因子,一种新型的CX3C趋化因子,因其膜相关结构及其在细胞黏附中的直接作用而显得不同寻常。我们已通过异核核磁共振方法解析了趋化因子趋化因子结构域(第1至76位氨基酸残基)的溶液结构。该集合中能量最低的20个结构的平均主链均方根偏差为0.43埃(不包括末端)。与许多形成同二聚体的其他趋化因子不同,趋化因子的趋化因子模块是单体的。将该结构与CC和CXC趋化因子进行比较,发现了一些有趣的差异,这些差异可能与受体结合有关。这些差异包括由CX3C基序形成的凸起、N端和30环(第30至38位氨基酸残基)的相对取向以及N环(第9至19位氨基酸残基)的构象。15N主链弛豫实验表明,蛋白质的这些相同区域是动态的。我们还用来自受体CX3CR1 N端的肽对15N标记的蛋白质进行了滴定,并证实受体的该区域与趋化因子趋化因子结构域接触。有趣的是,结合位点大致映射到最大灵活性和结构变异性的区域。这些数据共同提供了趋化因子与其受体相互作用方式的初步了解,并应有助于指导诱变研究,以进一步阐明通过CX3CR1进行结合和信号传导的分子细节。