Nikkelen E, van Meurs W L, Ohrn M A
Department of Anesthesiology, University of Florida College of Medicine, Gainesville 32610-0254, USA.
J Clin Monit Comput. 1998 Jul;14(5):329-37. doi: 10.1023/a:1009996221826.
To facilitate teaching the pharmacologic determinants of clinically observed drug effect, we expand on the hydraulic representation of the pharmacokinetics and pharmacodynamics of intravenous drugs.
There are two significant barriers to understanding the pharmacological determinants underlying clinically observed drug responses. The first obstacle is the mathematical nature of traditional descriptions of these phenomena; the second barrier to understanding is that most educational texts focus solely on pharmacokinetics. However, pharmacokinetics alone do not explain the action at the effect site. The scientific and educational literature has used analogs of pharmacokinetic phenomena to make the concepts more intuitive. This manuscript extends the use of a hydraulic analog to include the effect site, allowing a simultaneous representation of pharmacokinetics and pharmacodynamics.
In the described hydraulic analog, fluid delivered into a central reservoir is representative of drug infusion, and the heights of the fluid columns in the central and peripheral reservoirs are representative of the drug concentrations in the corresponding pharmacologic compartments. The height of the fluid column in an 'effect reservoir' is representative of the apparent effect site concentration in a simultaneous pharmacokinetic-pharmacodynamic model. A non-linear scale on the effect reservoir represents the relationship between the effect site concentration and the clinical effect. Reservoir surface areas are equivalent to volumes of distribution and hydraulic resistances are inversely proportional to drug clearances. The proof of mathematical equivalency of the presented analog to simultaneous pharmacokinetic-pharmacodynamic models is given in an appendix. ILLUSTRATION OF THE EDUCATIONAL APPLICATION: The effect window can represent monitored twitch response following the administration of a neuromuscular blocking agent. Using pharmacokinetic-pharmacodynamic parameter values for vecuronium, we demonstrate how the hydraulic analog can be used to explain the priming principle and the clinically observed time-course disparity of two effect sites: the larynx and the adductor pollicis. (A companion web site: http://www.anest.ufl.edu/ha.html presents an interactive animation of the described analog.)
为便于讲授临床观察到的药物效应的药理学决定因素,我们拓展了静脉注射药物药代动力学和药效动力学的水力模型。
理解临床观察到的药物反应背后的药理学决定因素存在两个重大障碍。第一个障碍是对这些现象的传统描述具有数学性质;第二个理解障碍是大多数教育文本仅关注药代动力学。然而,仅药代动力学并不能解释效应部位的作用。科学和教育文献使用药代动力学现象的类似物以使概念更直观。本手稿扩展了水力类似物的应用,将效应部位包括在内,从而能够同时呈现药代动力学和药效动力学。
在所描述的水力类似物中,注入中央储液器的液体代表药物输注,中央和外周储液器中液柱的高度代表相应药理学隔室中的药物浓度。“效应储液器”中液柱的高度代表同时存在的药代动力学 - 药效动力学模型中的表观效应部位浓度。效应储液器上的非线性刻度代表效应部位浓度与临床效应之间的关系。储液器的表面积等同于分布容积,水力阻力与药物清除率成反比。附录中给出了所提出的类似物与同时存在的药代动力学 - 药效动力学模型在数学上等效的证明。教育应用示例:效应窗可代表给予神经肌肉阻滞剂后监测到的抽搐反应。使用维库溴铵的药代动力学 - 药效动力学参数值,我们展示了水力类似物如何用于解释预充原理以及临床观察到的两个效应部位(喉部和拇内收肌)的时程差异。(配套网站:http://www.anest.ufl.edu/ha.html展示了所描述类似物的交互式动画。)