Suppr超能文献

酵母中蛋白质与mRNA丰度之间的相关性。

Correlation between protein and mRNA abundance in yeast.

作者信息

Gygi S P, Rochon Y, Franza B R, Aebersold R

机构信息

Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195-7730, USA.

出版信息

Mol Cell Biol. 1999 Mar;19(3):1720-30. doi: 10.1128/MCB.19.3.1720.

Abstract

We have determined the relationship between mRNA and protein expression levels for selected genes expressed in the yeast Saccharomyces cerevisiae growing at mid-log phase. The proteins contained in total yeast cell lysate were separated by high-resolution two-dimensional (2D) gel electrophoresis. Over 150 protein spots were excised and identified by capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein spots were quantified by metabolic labeling and scintillation counting. Corresponding mRNA levels were calculated from serial analysis of gene expression (SAGE) frequency tables (V. E. Velculescu, L. Zhang, W. Zhou, J. Vogelstein, M. A. Basrai, D. E. Bassett, Jr., P. Hieter, B. Vogelstein, and K. W. Kinzler, Cell 88:243-251, 1997). We found that the correlation between mRNA and protein levels was insufficient to predict protein expression levels from quantitative mRNA data. Indeed, for some genes, while the mRNA levels were of the same value the protein levels varied by more than 20-fold. Conversely, invariant steady-state levels of certain proteins were observed with respective mRNA transcript levels that varied by as much as 30-fold. Another interesting observation is that codon bias is not a predictor of either protein or mRNA levels. Our results clearly delineate the technical boundaries of current approaches for quantitative analysis of protein expression and reveal that simple deduction from mRNA transcript analysis is insufficient.

摘要

我们已经确定了在对数中期生长的酿酒酵母中表达的选定基因的mRNA与蛋白质表达水平之间的关系。通过高分辨率二维(2D)凝胶电泳分离总酵母细胞裂解物中所含的蛋白质。切除了150多个蛋白质斑点,并通过毛细管液相色谱-串联质谱(LC-MS/MS)进行鉴定。通过代谢标记和闪烁计数对蛋白质斑点进行定量。根据基因表达序列分析(SAGE)频率表计算相应的mRNA水平(V. E. 韦尔库列斯库、L. 张、W. 周、J. 沃格尔斯坦、M. A. 巴斯莱、D. E. 巴塞特、小P. 希特、B. 沃格尔斯坦和K. W. 金兹勒,《细胞》88:243 - 251,1997)。我们发现mRNA与蛋白质水平之间的相关性不足以从定量mRNA数据预测蛋白质表达水平。实际上,对于某些基因,虽然mRNA水平相同,但蛋白质水平变化超过20倍。相反,观察到某些蛋白质的稳态水平不变,而各自的mRNA转录水平变化高达30倍。另一个有趣的观察结果是密码子偏好性既不是蛋白质水平的预测指标,也不是mRNA水平的预测指标。我们的结果清楚地划定了当前蛋白质表达定量分析方法的技术界限,并表明仅从mRNA转录本分析进行简单推断是不够的。

相似文献

1
Correlation between protein and mRNA abundance in yeast.
Mol Cell Biol. 1999 Mar;19(3):1720-30. doi: 10.1128/MCB.19.3.1720.
2
A sampling of the yeast proteome.
Mol Cell Biol. 1999 Nov;19(11):7357-68. doi: 10.1128/MCB.19.11.7357.
4
Protein expression during lag phase and growth initiation in Saccharomyces cerevisiae.
Int J Food Microbiol. 2002 May 5;75(1-2):27-38. doi: 10.1016/s0168-1605(01)00726-7.
6
Osmostress-induced changes in yeast gene expression.
Mol Microbiol. 1992 Aug;6(15):2183-90. doi: 10.1111/j.1365-2958.1992.tb01392.x.
7
Identification of changes in gene expression by quantitation of mRNA levels.
Methods Mol Biol. 2008;419:243-58. doi: 10.1007/978-1-59745-033-1_17.
8
Genome-wide expression monitoring in Saccharomyces cerevisiae.
Nat Biotechnol. 1997 Dec;15(13):1359-67. doi: 10.1038/nbt1297-1359.
9
Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae.
Yeast. 2000 Sep 15;16(12):1131-45. doi: 10.1002/1097-0061(20000915)16:12<1131::AID-YEA609>3.0.CO;2-F.
10
Yeast CBP1 mRNA 3' end formation is regulated during the induction of mitochondrial function.
Mol Cell Biol. 1991 Feb;11(2):813-21. doi: 10.1128/mcb.11.2.813-821.1991.

引用本文的文献

1
Muscle Proteome Dynamics.
Adv Exp Med Biol. 2025;1478:113-153. doi: 10.1007/978-3-031-88361-3_7.
3
Conserved cross-domain protein-to-mRNA ratios enable proteome prediction in microbes.
mBio. 2025 Aug 13;16(8):e0141125. doi: 10.1128/mbio.01411-25. Epub 2025 Jul 24.
4
Automated descriptive cell type naming in flow and mass cytometry with CytoPheno.
Sci Rep. 2025 Jul 23;15(1):26750. doi: 10.1038/s41598-025-12153-w.
5
Proteomizer: Leveraging the Transcriptome-Proteome Mismatch to Infer Novel Gene Regulatory Relations.
bioRxiv. 2025 Jun 27:2025.06.22.660946. doi: 10.1101/2025.06.22.660946.
6
Multiomics integration prioritizes potential drug targets for multiple sclerosis.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2425537122. doi: 10.1073/pnas.2425537122. Epub 2025 Jun 27.
7
Quantitative multiplexed analysis of gene and protein expression patterns in .
Curr Res Microb Sci. 2025 Mar 2;8:100369. doi: 10.1016/j.crmicr.2025.100369. eCollection 2025.
9
Quantitative Label-Free Single-Cell Proteomics on the Orbitrap Astral MS.
Mol Cell Proteomics. 2025 Jun;24(6):100982. doi: 10.1016/j.mcpro.2025.100982. Epub 2025 May 5.
10
Transcriptomic and proteomic insights into feather keratin degradation by .
Front Microbiol. 2025 Apr 16;16:1509937. doi: 10.3389/fmicb.2025.1509937. eCollection 2025.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Proteome analysis: from protein characterization to biological function.
Trends Cell Biol. 1997 Apr;7(4):168-73. doi: 10.1016/S0962-8924(97)01033-7.
3
Absolute quantitation of 2-D protein spots.
Methods Mol Biol. 1999;112:417-21. doi: 10.1385/1-59259-584-7:417.
7
The Yeast Protein Database (YPD): a curated proteome database for Saccharomyces cerevisiae.
Nucleic Acids Res. 1998 Jan 1;26(1):68-72. doi: 10.1093/nar/26.1.68.
8
Yeast microarrays for genome wide parallel genetic and gene expression analysis.
Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13057-62. doi: 10.1073/pnas.94.24.13057.
9
Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins.
Electrophoresis. 1997 Aug;18(8):1347-60. doi: 10.1002/elps.1150180810.
10
Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143.
Electrophoresis. 1997 Aug;18(8):1314-34. doi: 10.1002/elps.1150180808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验