Suppr超能文献

小组讨论。癌症研究中的数据需求。

Panel discussion. Data needs in cancer.

作者信息

McGivney W T, Barker M L, Bost J E, Burns J, Loeb J M, Morris M, Roglieri J L, Stovall E, Swan D E

机构信息

National Comprehensive Cancer Network, Rockledge, Pennsylvania, USA.

出版信息

Oncology (Williston Park). 1998 Nov;12(11A):147-56.

Abstract

A prospective, comprehensive outcomes database was recently initiated by the National Comprehensive Cancer Network (NCCN) after a 2-year study to test data collection methods and systems. It started with data on 400 patients with newly diagnosed breast cancer at five NCCN sites, and over the next 3 years is projected to grow to include more than 12,000 patients with common cancers treated at all eligible NCCN sites. Among the goals of the database are: 1) to establish the capability to select, analyze, and report patterns of care and outcomes; 2) to allow NCCN members to assess their compliance with NCCN clinical practice guidelines and benchmark their performance against the rest of the NCCN; 3) to establish a true databased continuous quality improvement program; 4) to support clinical disease-oriented research and methodologic studies; and 5) to provide the NCCN with a vehicle for forging partnerships with others in the health-care field, such as the pharmaceutical industry, regulatory agencies, and accrediting bodies. Many of those potential partners were represented on this panel. Panelists discussed the data needs of their organizations, what they are doing to meet those needs, and how a comprehensive database will ultimately help improve patient care.

摘要

经过为期两年的测试数据收集方法和系统的研究后,美国国立综合癌症网络(NCCN)最近启动了一个前瞻性的综合结果数据库。该数据库始于五个NCCN站点的400例新诊断乳腺癌患者的数据,预计在接下来的3年里,将扩大到涵盖所有符合条件的NCCN站点治疗的12000多名常见癌症患者。该数据库的目标包括:1)建立选择、分析和报告治疗模式及结果的能力;2)使NCCN成员能够评估他们对NCCN临床实践指南的遵守情况,并将他们的表现与其他NCCN成员进行对比;3)建立一个真正基于数据库的持续质量改进计划;4)支持以临床疾病为导向的研究和方法学研究;5)为NCCN提供一个与医疗保健领域的其他机构(如制药行业、监管机构和认证机构)建立合作关系的平台。许多潜在合作伙伴都派代表参加了本次小组讨论。小组成员讨论了各自组织的数据需求、为满足这些需求所采取的措施,以及一个综合数据库最终将如何有助于改善患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验