Lash L H, Lipscomb J C, Putt D A, Parker J C
Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
Drug Metab Dispos. 1999 Mar;27(3):351-9.
Isolated human hepatocytes exhibited time-, trichloroethylene (Tri) concentration-, and cell concentration-dependent formation of S-(1, 2-dichlorovinyl)glutathione (DCVG) in incubations in sealed flasks with 25 to 10,000 ppm Tri in the headspace, corresponding to 0.011 to 4.4 mM in hepatocytes. Maximal formation of DCVG (22.5 +/- 8.3 nmol/120 min per 10(6) cells) occurred with 500 ppm Tri. Time-, protein concentration-, and both Tri and GSH concentration-dependent formation of DCVG were observed in liver and kidney subcellular fractions. Two kinetically distinct systems were observed in both cytosol and microsomes from pooled liver samples, whereas only one system was observed in subcellular fractions from pooled kidney samples. Liver cytosol exhibited apparent Km values (microM Tri) of 333 and 22.7 and Vmax values (nmol DCVG formed/min per mg protein) of 8.77 and 4.27; liver microsomes exhibited apparent Km values of 250 and 29.4 and Vmax values of 3.10 and 1.42; kidney cytosol and microsomes exhibited apparent Km values of 26.3 and 167, respectively, and Vmax values of 0.81 and 6.29, respectively. DCVG formation in samples of liver cytosol and microsomes from 20 individual donors exhibited a 6.5-fold variation in microsomes but only a 2.4-fold variation in cytosol. In coincubations of pooled liver cytosol and microsomes, addition of an NADPH-regenerating system produced marked inhibition of DCVG formation, but addition of GSH had no effect on cytochrome P-450-catalyzed formation of chloral hydrate. These results indicate that both human kidney and liver have significant capacity to catalyze DCVG formation, indicating that the initial step of the GSH-dependent pathway is not limiting in the formation of nephrotoxic and nephrocarcinogenic metabolites.
在密封烧瓶中进行的孵育实验中,分离出的人肝细胞表现出谷胱甘肽S-(1,2-二氯乙烯基)(DCVG)的生成呈现时间、三氯乙烯(Tri)浓度和细胞浓度依赖性。顶空中Tri浓度为25至10,000 ppm,相当于肝细胞中0.011至4.4 mM。500 ppm Tri时DCVG生成量最大(每10⁶个细胞22.5±8.3 nmol/120分钟)。在肝脏和肾脏亚细胞组分中观察到DCVG的生成呈现时间、蛋白质浓度以及Tri和谷胱甘肽(GSH)浓度依赖性。在汇集的肝脏样品的胞质溶胶和微粒体中观察到两个动力学不同的系统,而在汇集的肾脏样品的亚细胞组分中仅观察到一个系统。肝脏胞质溶胶的表观Km值(μM Tri)为333和22.7,Vmax值(每分钟每毫克蛋白质形成的nmol DCVG)为8.77和4.27;肝脏微粒体的表观Km值为250和29.4,Vmax值为3.10和1.42;肾脏胞质溶胶和微粒体的表观Km值分别为26.3和167,Vmax值分别为0.81和6.29。来自20个个体供体的肝脏胞质溶胶和微粒体样品中DCVG的生成在微粒体中呈现6.5倍的变化,但在胞质溶胶中仅呈现2.4倍的变化。在汇集的肝脏胞质溶胶和微粒体的共孵育中,添加NADPH再生系统会显著抑制DCVG的生成,但添加GSH对细胞色素P-450催化的水合氯醛的生成没有影响。这些结果表明,人肾脏和肝脏都具有催化DCVG生成的显著能力,这表明谷胱甘肽依赖性途径的初始步骤在肾毒性和肾致癌代谢物的形成中并非限制因素。