Suppr超能文献

大鼠离体肝细胞和肾细胞中三氯乙烯的谷胱甘肽依赖性代谢及其在线粒体和细胞毒性中的作用。

Glutathione-dependent metabolism of trichloroethylene in isolated liver and kidney cells of rats and its role in mitochondrial and cellular toxicity.

作者信息

Lash L H, Xu Y, Elfarra A A, Duescher R J, Parker J C

机构信息

Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.

出版信息

Drug Metab Dispos. 1995 Aug;23(8):846-53.

PMID:7493552
Abstract

Metabolism of trichloroethylene (Tri) by the glutathione (GSH) conjugation pathway was studied in hepatocytes, renal cortical cells, and liver subcellular fractions from male Fischer 344 rats. Toxicity of Tri and some of its GSH- and cytochrome P450-dependent metabolites was then studied in isolated hepatocytes, kidney cells, and liver and kidney mitochondria to assess the relative role of these metabolites in toxicity. Tri metabolism to S-(1,2-dichlorovinyl)glutathione (DCVG), a nephrotoxic metabolite of Tri, was demonstrated in both isolated hepatocytes and kidney cells. This suggests that the first Tri bioactivation step that leads to nephrotoxicity in vivo occurs in both liver and kidney. Rates of DCVG formation in liver microsomes and cytosol were similar, although total activity was greater in cytosol. Only S-(1,2-dichlorovinyl)-L-cysteine (DCVC), but not Tri, DCVG, or the other oxidative metabolites examined (trichloroacetate, dichloroacetate, chloral hydrate, trichloroethanol, or oxalic acid) caused acute hepatotoxicity, whereas only DCVC and DCVG produced acute nephrotoxicity in isolated renal cortical cells. Tri and the metabolites examined, except trichloroacetate and DCVG, caused a loss of function of liver and kidney mitochondria. In liver mitochondria, DCVC produced the largest decrease in mitochondrial respiration, whereas Tri, trichloroethanol, and dichloroacetate were somewhat less toxic and chloral hydrate was the least toxic. In kidney mitochondria, in contrast, Tri, trichloroethanol, dichloroacetate, chloral hydrate, and DCVC caused similar decreases in mitochondrial respiration. These results suggest that, whereas both GSH conjugation and cytochrome P450-dependent metabolism of Tri generate mitochondrial toxicants, only the GSH-derived metabolites were cytotoxic.

摘要

在雄性Fischer 344大鼠的肝细胞、肾皮质细胞和肝脏亚细胞组分中,研究了三氯乙烯(Tri)通过谷胱甘肽(GSH)结合途径的代谢情况。随后,在分离的肝细胞、肾细胞以及肝脏和肾脏线粒体中,研究了Tri及其一些依赖GSH和细胞色素P450的代谢产物的毒性,以评估这些代谢产物在毒性中的相对作用。在分离的肝细胞和肾细胞中,均证实了Tri代谢生成S-(1,2-二氯乙烯基)谷胱甘肽(DCVG),它是Tri的一种肾毒性代谢产物。这表明,在体内导致肾毒性的Tri首个生物活化步骤在肝脏和肾脏中均可发生。尽管细胞溶质中的总活性更高,但肝脏微粒体和细胞溶质中DCVG的形成速率相似。只有S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC),而非Tri、DCVG或其他检测的氧化代谢产物(三氯乙酸、二氯乙酸、水合氯醛、三氯乙醇或草酸)会引起急性肝毒性,而在分离的肾皮质细胞中,只有DCVC和DCVG会产生急性肾毒性。Tri以及除三氯乙酸和DCVG之外检测的代谢产物,均导致肝脏和肾脏线粒体功能丧失。在肝脏线粒体中,DCVC使线粒体呼吸作用下降幅度最大,而Tri、三氯乙醇和二氯乙酸的毒性稍小,水合氯醛毒性最小。相比之下,在肾脏线粒体中,Tri、三氯乙醇、二氯乙酸、水合氯醛和DCVC导致线粒体呼吸作用下降幅度相似。这些结果表明,虽然Tri的GSH结合和细胞色素P450依赖代谢均产生线粒体毒物,但只有GSH衍生的代谢产物具有细胞毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验