Suppr超能文献

基于非线性主成分分析的盲源分离最小二乘法。

Least-squares methods for blind source separation based on nonlinear PCA.

作者信息

Pajunen P, Karhunen J

机构信息

Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland.

出版信息

Int J Neural Syst. 1997 Oct-Dec;8(5-6):601-12. doi: 10.1142/s0129065797000549.

Abstract

In standard blind source separation, one tries to extract unknown source signals from their instantaneous linear mixtures by using a minimum of a priori information. We have recently shown that certain nonlinear extensions of principal component type neural algorithms can be successfully applied to this problem. In this paper, we show that a nonlinear PCA criterion can be minimized using least-squares approaches, leading to computationally efficient and fast converging algorithms. Several versions of this approach are developed and studied, some of which can be regarded as neural learning algorithms. A connection to the nonlinear PCA subspace rule is also shown. Experimental results are given, showing that the least-squares methods usually converge clearly faster than stochastic gradient algorithms in blind separation problems.

摘要

在标准盲源分离中,人们试图通过使用最少的先验信息从其瞬时线性混合中提取未知源信号。我们最近表明,主成分类型神经算法的某些非线性扩展可以成功应用于这个问题。在本文中,我们表明可以使用最小二乘法来最小化非线性主成分分析准则,从而得到计算效率高且收敛速度快的算法。我们开发并研究了这种方法的几个版本,其中一些可以被视为神经学习算法。还展示了与非线性主成分分析子空间规则的联系。给出了实验结果,表明在盲分离问题中,最小二乘法通常比随机梯度算法收敛得明显更快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验