Suppr超能文献

A unified neural bigradient algorithm for robust PCA and MCA.

作者信息

Wang L, Karhunen J

机构信息

Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland.

出版信息

Int J Neural Syst. 1996 Mar;7(1):53-67. doi: 10.1142/s0129065796000063.

Abstract

A new instantaneous-gradient search algorithm for computing a principal component or minor component type solution is proposed. The algorithm can use normalized Hebbian or anti-Hebbian learning in a unified formula. Starting from one-unit rule, a multi-unit algorithm is developed which can simultaneously extract several robust counterparts of the principal or minor eigenvectors of the data covariance matrix. Standard principal or minor components emerge as special cases from the general non-quadratic criterion. The learning rule is analyzed mathematically, and the theoretical results are verified by simulations. The proposed bigradient approach can be applied to blind separation of independent source signals from their linear mixtures.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验