Klein T E, Huang C C
Department of Pharmaceutical Chemistry, Computer Graphics Laboratory, University of California, San Francisco 94143-0446, USA.
Biopolymers. 1999 Feb;49(2):167-83. doi: 10.1002/(SICI)1097-0282(199902)49:2<167::AID-BIP5>3.0.CO;2-5.
The results of 0.5-1.0 ns molecular dynamics simulations of the collagen-like peptides [(POG)4(POA)(POG)4]3 and [(POG)9]3 (POG: proline-hydroxyproline-glycine) are presented. All simulations were performed using the AMBER-94 molecular mechanical force field with a shell of TIP3P waters surrounding the peptides. The initial geometries for the collagen-like peptides included an x-ray crystallographic structure, a computer-generated structure, a [(POG)9]3 structure modeled from the x-ray structure, and the x-ray structure with crystallographic waters replaced with a shell of modeled TIP3P waters. We examined the molecular dynamics peptide residue rms deviation fluctuations, dihedral angles, molecular and chain end-to-end distances, helical parameters, and peptide-peptide and peptide-solvent hydrogen-bonding patterns. Our molecular dynamics simulations of [(POG)4(POA)(POG)4]3 show average structures and internal coordinates similar to the x-ray crystallographic structure. Our results demonstrate that molecular dynamics can be used to reproduce the experimental structures of collagen-like peptides. We have demonstrated the feasibility of using the AMBER-94 molecular mechanical force field, which was parameterized to model nucleic acids and globular proteins, for fibril proteins. We provide a new interpretation of peptide-solvent hydrogen bonding and a peptide-peptide hydrogen bonding pattern not previously reported in x-ray studies. Last, we report on the differences; in particular with respect to main-chain dihedral angles and hydrogen bonding, between the native and mutant collagen-like peptides.
本文展示了类胶原蛋白肽[(POG)4(POA)(POG)4]3和[(POG)9]3(POG:脯氨酸-羟脯氨酸-甘氨酸)的0.5 - 1.0纳秒分子动力学模拟结果。所有模拟均使用AMBER - 94分子力学力场,并在肽周围设置一层TIP3P水分子壳层。类胶原蛋白肽的初始几何结构包括一个X射线晶体学结构、一个计算机生成的结构、一个根据X射线结构建模的[(POG)9]3结构,以及将晶体学水分子替换为一层模拟TIP3P水分子壳层的X射线结构。我们研究了分子动力学中肽残基的均方根偏差波动、二面角、分子和链的端到端距离、螺旋参数,以及肽 - 肽和肽 - 溶剂氢键模式。我们对[(POG)4(POA)(POG)4]3的分子动力学模拟显示,其平均结构和内部坐标与X射线晶体学结构相似。我们的结果表明,分子动力学可用于重现类胶原蛋白肽的实验结构。我们证明了使用AMBER - 94分子力学力场(该力场最初是为模拟核酸和球状蛋白质而参数化的)来研究纤维状蛋白质的可行性。我们对肽 - 溶剂氢键和一种肽 - 肽氢键模式提供了一种新的解释,这在之前的X射线研究中未曾报道。最后,我们报告了天然和突变类胶原蛋白肽之间的差异,特别是在主链二面角和氢键方面的差异。