Suppr超能文献

估计人类生育力参数时的偏倚可能性:统计模型比较

Potential for bias in estimating human fecundability parameters: a comparison of statistical models.

作者信息

Zhou H, Weinberg C R

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill 27599-7400, USA.

出版信息

Stat Med. 1999 Feb 28;18(4):411-22. doi: 10.1002/(sici)1097-0258(19990228)18:4<411::aid-sim26>3.0.co;2-m.

Abstract

Fecundability studies, where couples attempting pregnancy subject to 'failure' (conception) one time in each menstrual cycle, present a natural discrete failure-time scenario. Because the biologic capacity to conceive varies among couples in the population, a complication arises in choosing a method of analysis, related to the fact that the maximum follow-up time can vary from study to study, and follow-up time could potentially have different effects on parameters based on different approaches to modelling. Traditional development in fertility studies has been based on an implicit assumption that binary outcomes for different menstrual cycles are mutually independent. We contrast traditional models to a random effects model where cycle viability is modelled as subject-specific. We clarify the interpretations for different parameters from different models. We show that the traditional approach yields some regression parameters that depend on follow-up time, limiting the generalizability of inferences based on this analytic approach. By contrast, the subject-specific model consistently estimates parameters of interest, if the underlying distribution is properly specified. Data from a fecundability study carried out in North Carolina serves to illustrate these points.

摘要

生育力研究中,尝试怀孕的夫妇在每个月经周期经历一次“失败”(受孕未成功),呈现出一种自然的离散失败时间情形。由于人群中夫妇的受孕生物能力各不相同,在选择分析方法时会出现一个复杂情况,即不同研究的最长随访时间可能不同,而且基于不同建模方法,随访时间对参数可能有不同影响。生育研究的传统发展基于一个隐含假设,即不同月经周期的二元结局相互独立。我们将传统模型与一个随机效应模型进行对比,在随机效应模型中,周期生存能力被建模为个体特异性的。我们阐明了不同模型中不同参数的解释。我们表明,传统方法产生的一些回归参数依赖于随访时间,限制了基于这种分析方法的推断的可推广性。相比之下,如果正确指定了基础分布,个体特异性模型能一致地估计感兴趣的参数。在北卡罗来纳州进行的一项生育力研究的数据用于说明这些要点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验