Friedman J M
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA.
Comput Chem. 1999 Jan;23(1):9-23. doi: 10.1016/s0097-8485(98)00026-6.
An accurate interconversion of three-dimensional molecular spatial information between two alternative orthogonal representations is demonstrated. These alternative descriptions are useful for exhaustive six-dimensional grid searches of empirical energy functions and for estimating the contents of asymmetric units in sparsely packed, non-centrosymmetric crystalline arrays. To illustrate the fidelity of this interconversion, it is implemented to perform an exhaustive grid search in six-dimensional relative rotational and translational space (phase space) with the spherical harmonic-Bessel representation. This search is an extension of Crowther's crystallographic fast rotational overlap function from Patterson space to direct, three-dimensional space. The search uses a three-dimensional spherical harmonic expansion about a single center to represent a probe molecule's shape, charge and van der Waals parameters and numerous complete expansions about single centers to represent the complementary shape, electrostatic potential and van der Waals potential of several target sites about the complementary molecule. The rapid calculation of unique, complete expansions about numerous sites on a grid is made possible by application of the Fourier convolution theorem. Expansions from nearby grid points can be used to reconstruct the same molecular shape accurately, if this shape is contained entirely within the spherical zone of expansion about each grid point. This arbitrariness for the choice of origin, and the accuracy of interconversion between three-dimensional spherical harmonic-Bessel and Fourier representations, suggest a method for describing the contents of non-centrosymmetric, sparsely packed crystals. Incomplete Fourier representations (diffraction amplitudes) provide complex spherical harmonic-Bessel coefficients for a crystal packed with symmetry-enforced, non-centrosymmetrically arranged, non-overlapping spherical expansion zones.
证明了在两种交替的正交表示之间三维分子空间信息的精确相互转换。这些交替描述对于经验能量函数的详尽六维网格搜索以及估计稀疏堆积、非中心对称晶体阵列中不对称单元的含量很有用。为了说明这种相互转换的保真度,使用球谐 - 贝塞尔表示在六维相对旋转和平移空间(相空间)中进行详尽的网格搜索来实现它。这种搜索是克劳瑟的晶体学快速旋转重叠函数从帕特森空间到直接三维空间的扩展。该搜索使用围绕单个中心的三维球谐展开来表示探针分子的形状、电荷和范德华参数,并使用围绕单个中心的大量完整展开来表示互补分子上几个目标位点的互补形状、静电势和范德华势。通过应用傅里叶卷积定理,可以快速计算网格上多个位点的唯一完整展开。如果分子形状完全包含在每个网格点周围的扩展球区内,则可以使用附近网格点的展开来准确重建相同的分子形状。这种原点选择的任意性以及三维球谐 - 贝塞尔和傅里叶表示之间相互转换的准确性,提出了一种描述非中心对称、稀疏堆积晶体含量的方法。不完整的傅里叶表示(衍射振幅)为填充有对称强制、非中心对称排列、不重叠球扩展区的晶体提供复球谐 - 贝塞尔系数。