Suppr超能文献

产甲烷途径中一碳代谢的酶学

Enzymology of one-carbon metabolism in methanogenic pathways.

作者信息

Ferry J G

机构信息

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16801, USA.

出版信息

FEMS Microbiol Rev. 1999 Jan;23(1):13-38. doi: 10.1111/j.1574-6976.1999.tb00390.x.

Abstract

Methanoarchaea, the largest and most phylogenetically diverse group in the Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. All of the pathways have in common the two-electron reduction of methyl-coenzyme M to methane catalyzed by methyl-coenzyme M reductase but deviate in the source of the methyl group transferred to coenzyme M. Most of the methane produced in nature derives from acetate in a pathway where the activated substrate is cleaved by CO dehydrogenase/acetyl-CoA synthase and the methyl group is transferred to coenzyme M via methyltetrahydromethanopterin or methyltetrahydrosarcinapterin. Electrons for reductive demethylation of the methyl-coenzyme M originate from oxidation of the carbonyl group of acetate to carbon dioxide by the synthase. In the other major pathway, formate or H2 is oxidized to provide electrons for reduction of carbon dioxide to the methyl level and reduction of methyl-coenzyme to methane. Methane is also produced from the methyl groups of methanol and methylamines. In these pathways specialized methyltransferases transfer the methyl groups to coenzyme M. Electrons for reduction of the methyl-coenzyme M are supplied by oxidation of the methyl groups to carbon dioxide by a reversal of the carbon dioxide reduction pathway. Recent progress on the enzymology of one-carbon reactions in these pathways has raised the level of understanding with regard to the physiology and molecular biology of methanogenesis. These advances have also provided a foundation for future studies on the structure/function of these novel enzymes and exploitation of the recently completed sequences for the genomes from the methanoarchaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii.

摘要

甲烷古菌是古菌域中最大且系统发育多样性最高的类群,它们进化出了以单碳生物化学为特征的能量产生途径,其中具有新型辅因子和酶。所有这些途径的共同之处在于,甲基辅酶M还原酶催化甲基辅酶M进行双电子还原生成甲烷,但在转移至辅酶M的甲基来源上存在差异。自然界中产生的大部分甲烷来自乙酸盐,其途径是活化的底物被一氧化碳脱氢酶/乙酰辅酶A合酶裂解,甲基通过甲基四氢甲蝶呤或甲基四氢鲨烯蝶呤转移至辅酶M。甲基辅酶M还原脱甲基的电子来源于合酶将乙酸盐的羰基氧化为二氧化碳。在另一条主要途径中,甲酸或氢气被氧化,为将二氧化碳还原至甲基水平以及将甲基辅酶还原为甲烷提供电子。甲烷也由甲醇和甲胺的甲基产生。在这些途径中,专门的甲基转移酶将甲基转移至辅酶M。甲基辅酶M还原所需的电子由甲基通过二氧化碳还原途径的逆反应氧化为二氧化碳来提供。这些途径中单碳反应的酶学研究的最新进展提高了对产甲烷生理和分子生物学的理解水平。这些进展也为未来研究这些新型酶的结构/功能以及利用来自嗜热自养甲烷杆菌和詹氏甲烷球菌的甲烷古菌基因组最近完成的序列奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验