Hughes P E, Alexi T, Walton M, Williams C E, Dragunow M, Clark R G, Gluckman P D
Department of Pharmacology and Clinical Pharmacology and Research Centre for Developmental Medicine and Biology, School of Medicine, The University of Auckland, New Zealand.
Prog Neurobiol. 1999 Feb;57(4):421-50. doi: 10.1016/s0301-0082(98)00057-4.
This review primarily discusses work that has been performed in our laboratories and that of our direct collaborators and therefore does not represent an exhaustive review of the current literature. Our aim is to further discuss the role that gene expression plays in neuronal plasticity and pathology. In the first part of this review we examine activity-dependent changes in the expression of inducible transcription factors (ITFs) and neurotrophins with long-term potentiation (LTP) and kindling. This work has identified particular ITFs (Krox-20 and Krox-24) and neurotrophin systems (particularly the brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase-B, Trk-B system) that may be involved in stabilizing long-lasting LTP (i.e. LTP3). We also show that changes in the expression of other ITFs (Fos, Jun-D and Krox-20) and the BDNF/trkB neurotrophin system may play a central role in the development of hippocampal kindling, an animal model of human temporal lobe epilepsy. In the next part of this review we examine changes in gene expression after neuronal injuries (ischemia, prolonged seizure activity and focal brain injury) and after nerve transection (axotomy). We identify apoptosis-related genes (p53, c-Jun, Bax) whose delayed expression selectively increases in degenerating neurons, further suggesting that some forms of neuronal death may involve apoptosis. Moreover, since overexpression of the tumour-suppressor gene p53 induces apoptosis in a wide variety of dividing cell types we speculate that it may perform the same function in post-mitotic neurons following brain injuries. Additionally, we show that neuronal injury is associated with rapid, transient, activity-dependent expression of neurotrophins (BDNF and activinA) in neurons, contrasting with a delayed and more persistent injury-induced expression of certain growth factors (IGF-1 and TGFbeta) in glia. In this section we also describe results linking ITFs and neurotrophic factor expression. Firstly, we show that while BDNF and trkB are induced as immediate-early genes following injury, the injury-induced expression of activinA and trkC may be regulated by ITFs. We also discuss whether loss of retrograde transport of neurotrophic factors such as nerve growth factor following nerve transection triggers the selective and prolonged expression of c-Jun in axotomized neurons and whether c-Jun is responsible for regeneration or degeneration of these axotomized neurons. In the last section we further examine the role that gene expression may play in memory formation, epileptogenesis and neuronal degeneration, lastly speculating whether the expression of various growth factors after brain injury represents an endogenous neuroprotective response of the brain to injury. Here we discuss our results which show that pharmacological enhancement of this response with exogenous application of IGF-1 or TGF-beta reduces neuronal loss after brain injury.
本综述主要讨论了在我们实验室以及我们直接合作的实验室中所开展的工作,因此并不代表对当前文献的详尽综述。我们的目的是进一步探讨基因表达在神经元可塑性和病理学中所起的作用。在本综述的第一部分,我们研究了诱导型转录因子(ITFs)和神经营养因子的表达在长期增强(LTP)和点燃效应过程中与活动相关的变化。这项工作已确定了可能参与稳定持久LTP(即LTP3)的特定ITFs(Krox - 20和Krox - 24)以及神经营养因子系统(特别是脑源性神经营养因子(BDNF)/酪氨酸受体激酶 - B,Trk - B系统)。我们还表明,其他ITFs(Fos、Jun - D和Krox - 20)以及BDNF/trkB神经营养因子系统的表达变化可能在海马体点燃效应(人类颞叶癫痫的动物模型)的发展中起核心作用。在本综述的下一部分,我们研究了神经元损伤(缺血、长时间癫痫活动和局灶性脑损伤)以及神经横断(轴突切断术)后基因表达的变化。我们确定了凋亡相关基因(p53、c - Jun、Bax),其延迟表达在退化的神经元中选择性增加,进一步表明某些形式的神经元死亡可能涉及凋亡。此外,由于肿瘤抑制基因p53的过表达在多种分裂细胞类型中诱导凋亡,我们推测它在脑损伤后的有丝分裂后神经元中可能执行相同的功能。此外,我们表明神经元损伤与神经元中神经营养因子(BDNF和激活素A)的快速、短暂、与活动相关的表达有关,这与胶质细胞中某些生长因子(IGF - 1和TGFβ)的延迟且更持久的损伤诱导表达形成对比。在本节中,我们还描述了将ITFs与神经营养因子表达联系起来的结果。首先,我们表明虽然BDNF和trkB在损伤后作为即刻早期基因被诱导,但激活素A和trkC的损伤诱导表达可能受ITFs调节。我们还讨论了神经横断后神经营养因子如神经生长因子逆行运输的丧失是否会触发轴突切断的神经元中c - Jun的选择性和长期表达,以及c - Jun是否负责这些轴突切断的神经元的再生或退化。在最后一部分,我们进一步研究基因表达在记忆形成、癫痫发生和神经元退化中可能起的作用,最后推测脑损伤后各种生长因子的表达是否代表大脑对损伤的内源性神经保护反应。在此我们讨论我们的结果,这些结果表明通过外源性应用IGF - 1或TGF - β对这种反应进行药理学增强可减少脑损伤后的神经元损失。