Suppr超能文献

哺乳动物运动神经元输入-输出转换的功能鉴定

Functional identification of the input-output transforms of mammalian motoneurones.

作者信息

Binder M D, Poliakov A V, Powers R K

机构信息

Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle 98195, USA.

出版信息

J Physiol Paris. 1999 Jan-Apr;93(1-2):29-42. doi: 10.1016/s0928-4257(99)80134-x.

Abstract

We studied the responses of rat hypoglossal and cat lumbar motoneurones to a variety of excitatory and inhibitory injected current transients during repetitive discharge. The amplitudes and time courses of the transients were comparable to those of the synaptic currents underlying postsynaptic potentials (PSPs) recorded in these cells. Poisson trains of these current transients were combined with an additional independent, high frequency random waveform to approximate band-limited white noise. The composite, white noise waveform was then superimposed on long duration suprathreshold current steps. We used the responses of the motoneurones to the white noise stimulus to derive zero-, first- and second-order Wiener kernels, which provide a quantitative description of the relation between injected current and discharge probability. The convolution integral computed for an injected current waveform and the first-order Wiener kernel provides the best linear prediction of the associated peristimulus time histogram (PSTH). This linear model provided good matches to most of the PSTHs compiled between the times of occurrence of individual current transients and motoneurone discharges. However, for the largest amplitude current transients, a significant improvement in the PSTH match was often achieved by expanding the model to include the convolution of the second-order Wiener kernel with the input. The overall transformation of current inputs into firing rate could be approximated by a second-order Wiener Model, i.e., a cascade of a dynamic, linear filter followed by a static non-linearity. At a given mean firing rate, the non-linear component of the motoneurone's response could be described by the square of the linear component multiplied by a constant coefficient. The amplitude of the response of the linear component increased with the average firing rate, whereas the value of the multiplicative coefficient in the nonlinear component decreased. As a result, the overall transform could be predicted from the mean firing rate and the linear impulse response, yielding a relatively simple, general description of the motoneurone's input-output function.

摘要

我们研究了大鼠舌下神经运动神经元和猫腰段运动神经元在重复放电期间对各种兴奋性和抑制性注入电流瞬变的反应。这些瞬变的幅度和时间进程与在这些细胞中记录的突触后电位(PSP)所基于的突触电流相当。这些电流瞬变的泊松序列与一个额外的独立高频随机波形相结合,以近似带限白噪声。然后将合成的白噪声波形叠加在长时间的阈上电流阶跃上。我们利用运动神经元对白噪声刺激的反应来推导零阶、一阶和二阶维纳核,它们提供了注入电流与放电概率之间关系的定量描述。针对注入电流波形和一阶维纳核计算的卷积积分提供了相关刺激后时间直方图(PSTH)的最佳线性预测。这个线性模型与在单个电流瞬变发生时间和运动神经元放电之间编制的大多数PSTH都有很好的匹配。然而,对于最大幅度的电流瞬变,通过将模型扩展到包括二阶维纳核与输入的卷积,通常可以在PSTH匹配上取得显著改进。电流输入到发放率的整体转换可以用二阶维纳模型近似,即一个动态线性滤波器级联一个静态非线性。在给定的平均发放率下,运动神经元反应的非线性成分可以用线性成分的平方乘以一个常数系数来描述。线性成分反应的幅度随平均发放率增加,而非线性成分中乘法系数的值减小。因此,可以从平均发放率和线性脉冲响应预测整体转换,从而对运动神经元输入-输出函数给出一个相对简单、通用的描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验