Suppr超能文献

猫运动神经元突触后电位的形状与放电概率变化之间的关系。

Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones.

作者信息

Fetz E E, Gustafsson B

出版信息

J Physiol. 1983 Aug;341:387-410. doi: 10.1113/jphysiol.1983.sp014812.

Abstract
  1. The shapes of post-synaptic potentials (p.s.p.s) in cat motoneurones were compared with the time course of changes in firing probability during repetitive firing. Excitatory and inhibitory post-synaptic potentials (e.p.s.p.s and i.p.s.p.s) were evoked by electrical stimulation of peripheral nerve filaments. With the motoneurone quiescent, the shape of each p.s.p. was obtained by compiling post-stimulus averages of the membrane potential. Depolarizing current was then injected to evoke repetitive firing, and the post-stimulus time histogram of motoneurone spikes was obtained; this histogram reveals the primary features (peak and/or trough) of the cross-correlogram between stimulus and spike trains. The time course of the correlogram features produced by each p.s.p. was compared with the p.s.p. shape and its temporal derivative.2. E.p.s.p.s of different sizes (0.15-3.1 mV, mean 0.75 mV) and shapes were investigated. The primary correlogram peak began, on the average, 0.48 msec after onset of the e.p.s.p., and reached a maximum 0.29 msec before the summit of the e.p.s.p; in many cases the correlogram peak was followed by a trough, in which firing rate fell below base-line rate. The height of the correlogram peak with respect to base-line firing rate increased in proportion to both the amplitude of the e.p.s.p.s and the magnitude of their rising slope (in these data, amplitude and rising slope also covaried).3. The mean half-width of the correlogram peaks (0.65+/-0.28 msec (S.D.)) agreed better with the average half-width of the e.p.s.p. derivatives (0.55+/-0.33 msec) than with the half-width of the e.p.s.p.s (4.31+/-1.50 msec). The shape of the primary correlogram peak produced by simple e.p.s.p.s often resembled the temporal derivative of the e.p.s.p. rise. For larger e.p.s.p.s, the shape of the correlogram peak closely matched the e.p.s.p. derivative, while smaller e.p.s.p.s in appreciable synaptic noise often generated correlogram peaks somewhat wider than their derivatives. On the other hand, the match between the correlogram trough that followed the peak and the negative slope of the e.p.s.p. was better for the small e.p.s.p.s than for the large e.p.s.p.s; for large e.p.s.p.s the drop in firing rate during the trough was typically limited at zero. These relations were tested further by comparing the integral of the correlogram with the time course of the e.p.s.p. For large e.p.s.p.s, the correlogram integral matched the rising phase of the e.p.s.p. quite well, although it underestimated the rate of decline of the e.p.s.p.4. Complex e.p.s.p.s with distinct components during their rising phase often produced correlogram peaks that did not accurately reflect the features in their temporal derivative. Temporal summation of large e.p.s.p.s and summation of their derivatives was linear, but the resulting correlogram peaks did not add linearly; the second correlogram peak was often smaller than the first. However, when small e.p.s.p.s were summed, the correlogram peaks more closely matched the e.p.s.p. derivatives.5. Compound i.p.s.p.s produced primary correlogram troughs followed by a shallow compensatory peak. The width of the trough extended through the peak of the i.p.s.p., well into the falling phase of the i.p.s.p. During the trough the firing rate usually dropped to zero. Thus, the primary correlogram features produced by large i.p.s.p.s did not resemble any linear combination of the shape of the i.p.s.p. and/or its temporal derivative. Moreover, the integral of the correlogram did not resemble the i.p.s.p.6. The major observations are consistent with a motoneurone model in which a membrane potential ramp approaches a voltage threshold for spike initiation. Near threshold, e.p.s.p.s superimposed on the ramp advance the occurrence of spikes to their rising phase, producing a correlogram peak resembling their temporal derivative. Synaptic noise would increase the probability of sampling the peak of the e.p.s.p., leading to wider correlogram peaks. I.p.s.p.s would delay the occurrence of spikes to their falling phase.
摘要
  1. 将猫运动神经元中突触后电位(p.s.p.s)的形状与重复放电期间放电概率的变化时间过程进行了比较。通过电刺激外周神经纤维诱发兴奋性和抑制性突触后电位(e.p.s.p.s和i.p.s.p.s)。在运动神经元静止时,通过汇编膜电位的刺激后平均值来获得每个p.s.p.的形状。然后注入去极化电流以诱发重复放电,并获得运动神经元动作电位的刺激后时间直方图;该直方图揭示了刺激与动作电位序列之间互相关函数的主要特征(峰值和/或谷值)。将每个p.s.p.产生的互相关函数特征的时间过程与p.s.p.的形状及其时间导数进行比较。

  2. 研究了不同大小(0.15 - 3.1 mV,平均0.75 mV)和形状的e.p.s.p.s。互相关函数的主要峰值平均在e.p.s.p.开始后0.48毫秒出现,并在e.p.s.p.峰值前0.29毫秒达到最大值;在许多情况下,互相关函数峰值后跟着一个谷值,此时放电率低于基线率。互相关函数峰值相对于基线放电率的高度与e.p.s.p.s的幅度及其上升斜率的大小成比例增加(在这些数据中,幅度和上升斜率也相互协变)。

  3. 互相关函数峰值的平均半高宽(0.65±0.28毫秒(标准差))与e.p.s.p.导数的平均半高宽(0.55±0.33毫秒)比与e.p.s.p.s的半高宽(4.31±1.50毫秒)更吻合。简单e.p.s.p.s产生的互相关函数主要峰值的形状通常类似于e.p.s.p.上升的时间导数。对于较大的e.p.s.p.s,互相关函数峰值的形状与e.p.s.p.导数紧密匹配,而在明显的突触噪声中较小的e.p.s.p.s通常产生比其导数稍宽的互相关函数峰值。另一方面,峰值后的互相关函数谷值与e.p.s.p.的负斜率之间的匹配对于小的e.p.s.p.s比大的e.p.s.p.s更好;对于大的e.p.s.p.s,谷值期间放电率的下降通常限制在零。通过比较互相关函数的积分与e.p.s.p.的时间过程进一步测试了这些关系。对于大的e.p.s.p.s,互相关函数积分与e.p.s.p.的上升阶段相当吻合,尽管它低估了e.p.s.p.的下降速率。

  4. 在其上升阶段具有不同成分的复杂e.p.s.p.s通常产生的互相关函数峰值不能准确反映其时间导数中的特征。大的e.p.s.p.s的时间总和及其导数的总和是线性的,但产生的互相关函数峰值不是线性相加的;第二个互相关函数峰值通常比第一个小。然而,当小的e.p.s.p.s相加时,互相关函数峰值与e.p.s.p.导数更紧密匹配。

  5. 复合i.p.s.p.s产生主要的互相关函数谷值,随后是一个浅的补偿峰值。谷值的宽度延伸穿过i.p.s.p.的峰值,一直到i.p.s.p.的下降阶段。在谷值期间,放电率通常降至零。因此,大的i.p.s.p.s产生的主要互相关函数特征与i.p.s.p.的形状和/或其时间导数的任何线性组合都不相似。此外,互相关函数的积分与i.p.s.p.不相似。

  6. 主要观察结果与一个运动神经元模型一致,在该模型中,膜电位斜坡接近动作电位起始的电压阈值。在阈值附近,叠加在斜坡上的e.p.s.p.s将动作电位的发生提前到其上升阶段,产生一个类似于其时间导数的互相关函数峰值。突触噪声会增加采样e.p.s.p.峰值的概率,导致更宽的互相关函数峰值。i.p.s.p.s会将动作电位的发生延迟到其下降阶段。

相似文献

引用本文的文献

5
Modeling the Short-Term Dynamics of Excitatory Spike Transmission.建模兴奋性尖峰传输的短期动力学。
J Neurosci. 2020 May 20;40(21):4185-4202. doi: 10.1523/JNEUROSCI.1482-19.2020. Epub 2020 Apr 17.
7
Recruitment gain of spinal motor neuron pools in cat and human.猫和人脊髓运动神经元池的募集增益。
Exp Brain Res. 2019 Nov;237(11):2897-2909. doi: 10.1007/s00221-019-05628-6. Epub 2019 Sep 6.

本文引用的文献

7
Cross-correlation functions for a neuronal model.神经元模型的互相关函数。
Biophys J. 1974 Aug;14(8):567-82. doi: 10.1016/S0006-3495(74)85936-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验