Suppr超能文献

Comparative breast tumor imaging and comparative in vitro metabolism of 16alpha-[18F]fluoroestradiol-17beta and 16beta-[18F]fluoromoxestrol in isolated hepatocytes.

作者信息

Jonson S D, Bonasera T A, Dehdashti F, Cristel M E, Katzenellenbogen J A, Welch M J

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Nucl Med Biol. 1999 Jan;26(1):123-30. doi: 10.1016/s0969-8051(98)00079-1.

Abstract

16beta-[18F]Fluoromoxestrol ([18]betaFMOX) is an analog of 16alpha-[18F]fluoroestradiol-17beta ([18F]FES), a radiopharmaceutical known to be an effective positron emission tomography (PET) imaging agent for estrogen receptor-positive (ER+) human breast tumors. Based on comparisons of target tissue uptake efficiency and selectivity in a rat model, [18F]betaFMOX was predicted to be as effective an imaging agent as [18F]FES. However, in a preliminary PET imaging study with [18F]FMOX of 12 patients, 3 of whom had ER+ breast cancer, no tumor localization of [18F]betaFMOX was observed. In search for an explanation for the unsuccessful [18F]betaFMOX clinical trial, we have examined the rate of metabolism of [18F]FMOX and [18F]FES in isolated rat, baboon, and human hepatocytes. We have also studied the effect of the serum protein sex hormone-binding globulin (SHBG), which binds [18F]FES better than [18F]betaFMOX, on these rates of metabolism. Immature rat hepatocytes were found to metabolize [18F]FES 31 times faster than [18F]betaFMOX, whereas mature rat cells metabolized [18F]FES only 3 times faster, and baboon and human hepatocytes only 2 times faster than [18F]betaFMOX. In the presence of SHBG, the metabolic consumption rate for [18F]FES in mature rat hepatocytes decreased by 26%. Thus, the very favorable target tissue uptake characteristics of [18F]betaFMOX determined in the rat probably result from its comparative resistance to metabolism (vis-a-vis [18F]FES) in this species, an advantage that is strongly reflected in comparative metabolism rates in rat hepatocytes. In the baboon and human, [18F]FES is extensively protein bound and protected from metabolism, an effect that may be reflected to a degree as a decrease in the rate of metabolism of this compound in baboon and human hepatocytes relative to [18F]betaFMOX. Thus in primates, SHBG may potentiate the ER-mediated uptake of [18F]FES in ER+ tumors by selectively protecting this ligand from metabolism and ensuring its delivery to receptor-containing cells. In addition to current screening methods for 18F-estrogens that involve evaluating in vivo ER-mediated uptake in the immature female rat, studies comparing the metabolism of the new receptor ligands in isolated hepatocytes, especially those from primates or humans, may assist in predicting the potential of these ligands for human PET imaging.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验