Egelman D M, Montague P R
Division of Neuroscience, Center for Theoretical Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
Biophys J. 1999 Apr;76(4):1856-67. doi: 10.1016/s0006-3495(99)77345-5.
In the brain, hundreds of intracellular processes are known to depend on calcium influx; hence any substantial fluctuation in external calcium ([Ca2+]o) is likely to engender important functional effects. Employing the known scales and parameters of mammalian neural tissue, we introduce and justify a computational approach to the hypothesis that large changes in local [Ca2+]o will be part of normal neural activity. Using this model, we show that the geometry of the extracellular space in combination with the rapid movement of calcium through ionic channels can cause large external calcium fluctuations, up to 100% depletion in many cases. The exact magnitude of a calcium fluctuation will depend on 1) the size of the consumption zone, 2) the local diffusion coefficient of calcium, and 3) the geometrical arrangement of the consuming elements. Once we have shown that using biologically relevant parameters leads to calcium changes, we focus on the signaling capacity of such concentration fluctuations. Given the sensitivity of neurotransmitter release to [Ca2+]o, the exact position and timing of neural activity will delimit the terminals that are able to release neurotransmitter. Our results indicate that mammalian neural tissue is engineered to generate significant changes in external calcium concentrations during normal activity. This design suggests that such changes play a role in neural information processing.
在大脑中,已知数百种细胞内过程依赖于钙内流;因此,细胞外钙([Ca2+]o)的任何显著波动都可能产生重要的功能影响。利用哺乳动物神经组织的已知尺度和参数,我们提出并论证了一种计算方法,用于验证局部[Ca2+]o的大幅变化将是正常神经活动一部分的假设。使用该模型,我们表明细胞外空间的几何形状与钙通过离子通道的快速移动相结合,可导致细胞外钙大幅波动,在许多情况下耗尽高达100%。钙波动的确切幅度将取决于1)消耗区的大小,2)钙的局部扩散系数,以及3)消耗元件的几何排列。一旦我们证明使用生物学相关参数会导致钙变化,我们就关注这种浓度波动的信号传导能力。鉴于神经递质释放对[Ca2+]o的敏感性,神经活动的确切位置和时间将限定能够释放神经递质的终末。我们的结果表明,哺乳动物神经组织在正常活动期间会产生细胞外钙浓度的显著变化。这种设计表明,此类变化在神经信息处理中发挥作用。