Suppr超能文献

Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis.

作者信息

Entcheva E, Trayanova N A, Claydon F J

机构信息

Department of Biomedical Engineering, University of Memphis, TN 38152, USA.

出版信息

IEEE Trans Biomed Eng. 1999 Mar;46(3):260-70. doi: 10.1109/10.748979.

Abstract

This paper examines the combined action of cardiac fiber curvature and transmural fiber rotation in polarizing the myocardium under the conditions of a strong electrical shock. The study utilizes a three-dimensional finite element model and the continuous bidomain representation of cardiac tissue to model steady-state polarization resulting from a defibrillation-strength uniform applied field. Fiber architecture is incorporated in the model via the shape of the heart, an ellipsoid of variable ellipticity index, and via an analytical function, linear or nonlinear, describing the transmural fiber rotation. Analytical estimates and numerical results are provided for the location and shape of the "bulk" polarization (polarization away from the tissue boundaries) as a function of the fiber field, or more specifically, of the conductivity changes in axial and radial direction with respect to the applied electrical field lines. Polarization in the tissue "bulk" is shown to exist only under the condition of unequal anisotropy ratios in the extra- and intracellular spaces. Variations in heart geometry and, thus, fiber curvature, are found to lead to change in location of the zones of significant membrane polarization. The transmural fiber rotation function modulates the transmembrane potential profile in the radial direction. A higher gradient of the transmural transmembrane potential is observed in the presence of fiber rotation as compared to the no rotation case. The analysis presented here is a step forward in understanding the interaction between tissue structure and applied electric field in establishing the pattern of membrane polarization during the initial phase of the defibrillation shock.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验