Suppr超能文献

铜绿假单胞菌中甘油分解代谢与己糖磷酸衍生物代谢之间的关系。

Relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives by Pseudomonas aeruginosa.

作者信息

Heath H E, Gaudy E T

出版信息

J Bacteriol. 1978 Nov;136(2):638-46. doi: 10.1128/jb.136.2.638-646.1978.

Abstract

The relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives in Pseudomonas aeruginosa was studied by comparing the growth on glycerol and enzymatic constitution of strain PAO with these characteristics of glucose-catabolic mutants and revertants. Growth of strain PAO on glycerol induced a catabolic oxidized nicotinamide adenine dinucleotide-linked glyceraldehyde-phosphate dehydrogenase and seven glucose-catabolic enzymes. The results indicated that these enzymes were induced by a six-carbon metabolite of glucose. All strains possessed a constitutive anabolic Embden-Meyerhof-Parnas pathway allowing limited conversion of glycerol-derived triosephosphate to hexosephosphate derivatives, which was consistent with induction of these enzymes by glycerol. Phosphogluconate dehydratase-deficient mutants grew on glycerol. However, mutants lacking both phosphogluconate dehydrogenase and phosphogluconate dehydratase were unable to grow on glycerol, although these strains possessed all of the enzymes needed for degradation of glycerol. These mutants apparently were inhibited by hexosephosphate derivatives, which originated from glycerol-derived triosephosphate and could not be dissimilated. This conclusion was supported by the fact that revertants regaining only a limited capacity to degrade 6-phosphogluconate were glycerol positive but remained glucose negative.

摘要

通过比较铜绿假单胞菌PAO菌株在甘油上的生长情况和酶组成与葡萄糖分解代谢突变体及回复突变体的这些特征,研究了甘油分解代谢与磷酸己糖衍生物代谢之间的关系。PAO菌株在甘油上生长诱导产生一种分解代谢的氧化型烟酰胺腺嘌呤二核苷酸连接的甘油醛-3-磷酸脱氢酶和七种葡萄糖分解代谢酶。结果表明,这些酶是由葡萄糖的一种六碳代谢产物诱导产生的。所有菌株都具有组成型的糖酵解途径,允许甘油衍生的磷酸丙糖有限地转化为磷酸己糖衍生物,这与甘油对这些酶的诱导作用一致。磷酸葡萄糖酸脱水酶缺陷型突变体能够在甘油上生长。然而,同时缺乏磷酸葡萄糖酸脱氢酶和磷酸葡萄糖酸脱水酶的突变体尽管拥有甘油降解所需的所有酶,但仍无法在甘油上生长。这些突变体显然受到磷酸己糖衍生物的抑制,这些衍生物源自甘油衍生的磷酸丙糖且无法被异化。这一结论得到以下事实的支持:仅恢复有限6-磷酸葡萄糖酸降解能力的回复突变体对甘油呈阳性反应,但对葡萄糖仍呈阴性反应。

相似文献

2
Metabolism of carbohydrate derivatives by Pseudomonas acidovorans.
J Bacteriol. 1979 May;138(2):418-24. doi: 10.1128/jb.138.2.418-424.1979.
4
Metabolism of various carbon sources by Azospirillum brasilense.
J Bacteriol. 1983 Dec;156(3):1369-72. doi: 10.1128/jb.156.3.1369-1372.1983.
5
Transport of glucose, gluconate, and methyl alpha-D-glucoside by Pseudomonas aeruginosa.
J Bacteriol. 1974 Mar;117(3):1261-9. doi: 10.1128/jb.117.3.1261-1269.1974.
6
Gluconate regulation of glucose catabolism in Pseudomonas fluorescens.
J Bacteriol. 1972 Oct;112(1):291-8. doi: 10.1128/jb.112.1.291-298.1972.
7
Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase.
J Bacteriol. 1967 Apr;93(4):1337-45. doi: 10.1128/jb.93.4.1337-1345.1967.
10
Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway.
J Bacteriol. 1982 Jun;150(3):1340-7. doi: 10.1128/jb.150.3.1340-1347.1982.

引用本文的文献

2
Characterization of the Entner-Doudoroff pathway in catheter-associated urinary tract infections.
J Bacteriol. 2024 Jan 25;206(1):e0036123. doi: 10.1128/jb.00361-23. Epub 2023 Dec 4.
3
Characterization of the Entner-Douderoff Pathway in Catheter-associated Urinary Tract Infections.
bioRxiv. 2023 Nov 14:2023.11.14.567044. doi: 10.1101/2023.11.14.567044.
5
Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species.
Microb Biotechnol. 2020 Jan;13(1):32-53. doi: 10.1111/1751-7915.13400. Epub 2019 Mar 18.
7
Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway.
J Bacteriol. 1982 Jun;150(3):1340-7. doi: 10.1128/jb.150.3.1340-1347.1982.
8
9
Metabolism of various carbon sources by Azospirillum brasilense.
J Bacteriol. 1983 Dec;156(3):1369-72. doi: 10.1128/jb.156.3.1369-1372.1983.
10
Metabolism of carbohydrate derivatives by Pseudomonas acidovorans.
J Bacteriol. 1979 May;138(2):418-24. doi: 10.1128/jb.138.2.418-424.1979.

本文引用的文献

2
Studies on the oxidation of glucose by Pseudomonas fluorescens.
J Bacteriol. 1951 Aug;62(2):181-6. doi: 10.1128/jb.62.2.181-186.1951.
3
Utilization of L-alpha-glycerophosphate by Escherichia coli without hydrolysis.
Proc Natl Acad Sci U S A. 1962 Dec 15;48(12):2145-50. doi: 10.1073/pnas.48.12.2145.
4
The catabolism of glucose and gluconate in Pseudomonas species.
Arch Biochem Biophys. 1959 Apr;81(2):489-92. doi: 10.1016/0003-9861(59)90229-2.
5
The aerobic pseudomonads: a taxonomic study.
J Gen Microbiol. 1966 May;43(2):159-271. doi: 10.1099/00221287-43-2-159.
6
Isolation of spontaneous mutant strains of Pseudomonas putida.
Biochem Biophys Res Commun. 1969 Jul 7;36(1):179-84. doi: 10.1016/0006-291x(69)90666-4.
7
Transport of glycerol by Pseudomonas aeruginosa.
J Bacteriol. 1971 Oct;108(1):82-8. doi: 10.1128/jb.108.1.82-88.1971.
8
The mutagenic effect of prolonged treatment with ethyl methanesulfonate.
Mutat Res. 1967 Jul-Aug;4(4):409-13. doi: 10.1016/0027-5107(67)90003-6.
9
Reductive pentose phosphate cycle in Nitrosocystis oceanus.
J Bacteriol. 1966 Mar;91(3):1178-85. doi: 10.1128/jb.91.3.1178-1185.1966.
10
2-keto-3-deoxygluconate 6-phosphate aldolase mutants of Escherichia coli.
J Bacteriol. 1971 Dec;108(3):1277-83. doi: 10.1128/jb.108.3.1277-1283.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验