Suppr超能文献

Aerosol transport and deposition in the rhythmically expanding pulmonary acinus.

作者信息

Tsuda A, Henry F S, Otani Y, Haber S, Butler J P

机构信息

Physiology Program, Harvard School of Public Health, Boston, Massachusetts, USA.

出版信息

J Aerosol Med. 1996;9(3):389-408. doi: 10.1089/jam.1996.9.389.

Abstract

Little is known about factors controlling the dynamics of aerosol dispersion and deposition in the lung periphery, though this knowledge becomes increasingly important in many fields such as environmental and occupational exposure, diagnostic applications, and therapeutic deliver of drugs via aerosols. For the last several years, we have been studying aerosol behavior in the pulmonary acinus, where the airway structure and the associated fluid mechanics are distinctly different from those in the conducting airways. Our major research efforts have been focused on the basic physics underlying acinar fluid mechanics and particle dynamics, which are likely to be conditioned by the two key geometric factors of acinar airways: structural alveolation and rhythmic expansion and contraction of the alveolar walls. A combination of computational and experimental analyses revealed that due to these unique geometric features acinar flow can be extremely complex despite the low Reynolds number, and can have substantial effects on particle dynamics. In particular, chaotic mixing can occur in the lung periphery. In the course of such a mixing process, the inhaled aerosol particles quickly mix with the residual alveolar gas in a manner that is radically different from the previously considered classical diffusion process. The objective of this paper is to briefly review our current understanding of these processes, to discuss existing deposition models, and to describe our ongoing research efforts toward a basic understanding of aerosol behavior in the pulmonary acinus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验