Winet H, Keller S R
J Exp Biol. 1976 Dec;65(3):577-602. doi: 10.1242/jeb.65.3.577.
The hydrodynamics and energetics of helical swimming by the bacterium Spirillum sp. is analysed using observations from medium speed cine photomicrography and theory. The photographic records show that the swimming organism's flagellar bundles beat in a helical fashion just as other bacterial flagella do. The data are analysed according to the rotational resistive theory of Chwang & Wu (1971) in a simple-to-use parametric form with the viscous coefficients Cs and Cn calculated according to the method of Lighthill (1975). Results of the analysis show that Spirillum dissipated biochemical energy in performing work against fluid resistance to motion at an average rate of about 6 X 10(-8) dyne cm s-1 with some 62-72% of the power dissipation due to the non-contractile body. These relationships yield a relatively low hydromechanical efficiency which is reflected in swimming speeds much smaller than a representative eukaryote. In addition the Cn/Cs ratio for the body is shown to lie in the range 0-86-1-51 and that for the flagellar bundle in the range 1-46-1-63. The implications of the power calculations for the Berg & Anderson (1973) rotating shaft model are discussed and it is shown that a rotational resistive theory analysis predicts a 5-cross bridge M ring for each flagellum of Spirillum.
利用中速电影显微摄影的观察结果和理论,对螺旋菌属细菌的螺旋游动的流体动力学和能量学进行了分析。摄影记录表明,游动生物体的鞭毛束以螺旋方式摆动,就像其他细菌鞭毛一样。根据庄和吴(1971年)的旋转阻力理论,以一种易于使用的参数形式对数据进行了分析,其中粘性系数Cs和Cn是根据莱特希尔(1975年)的方法计算的。分析结果表明,螺旋菌在克服流体运动阻力做功时消耗生化能量的平均速率约为6×10^(-8)达因·厘米·秒^(-1),其中约62%-72%的功率耗散是由于非收缩性身体造成的。这些关系产生了相对较低的流体力学效率,这反映在其游动速度远低于典型的真核生物。此外,身体的Cn/Cs比值在0.86-1.51范围内,鞭毛束的Cn/Cs比值在1.46-1.63范围内。讨论了功率计算对伯格和安德森(1973年)旋转轴模型的影响,结果表明,旋转阻力理论分析预测螺旋菌的每条鞭毛有一个5跨桥M环。