Murat Dorothée, Hérisse Marion, Espinosa Leon, Bossa Alicia, Alberto François, Wu Long-Fei
Laboratoire de Chimie Bactérienne, Aix-Marseille Univ., CNRS, UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille, France Laboratoire International Associé de Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Centre National de la Recherche Scientifique, Marseille, France
Laboratoire de Chimie Bactérienne, Aix-Marseille Univ., CNRS, UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille, France.
J Bacteriol. 2015 Oct;197(20):3275-82. doi: 10.1128/JB.00172-15. Epub 2015 Aug 3.
Current knowledge regarding the mechanism that governs flagellar motor rotation in response to environmental stimuli stems mainly from the study of monotrichous and peritrichous bacteria. Little is known about how two polar flagella, one at each cell pole of the so-called amphitrichous bacterium, are coordinated to steer the swimming. Here we fluorescently labeled the flagella of Magnetospirillum magneticum AMB-1 cells and took advantage of the magnetically controllable swimming of this bacterium to investigate flagellar rotation in moving cells. We identified three motility behaviors (runs, tumbles, and reversals) and two characteristic fluorescence patterns likely corresponding to flagella rotating in opposite directions. Each AMB-1 locomotion mode was systematically associated with particular flagellar patterns at the poles which led us to conclude that, while cell runs are allowed by the asymmetrical rotation of flagellar motors, their symmetrical rotation triggers cell tumbling. Our observations point toward a precise coordination of the two flagellar motors which can be temporarily unsynchronized during tumbling.
Motility is essential for bacteria to search for optimal niches and survive. Many bacteria use one or several flagella to explore their environment. The mechanism by which bipolarly flagellated cells coordinate flagellar rotation is poorly understood. We took advantage of the genetic amenability and magnetically controlled swimming of the spirillum-shaped magnetotactic bacterium Magnetospirillum magneticum AMB-1 to correlate cell motion with flagellar rotation. We found that asymmetric rotation of the flagella (counterclockwise at the lagging pole and clockwise at the leading pole) enables cell runs whereas symmetric rotation triggers cell tumbling. Taking into consideration similar observations in spirochetes, bacteria possessing bipolar ribbons of periplasmic flagella, we propose a conserved motility paradigm for spirillum-shaped bipolarly flagellated bacteria.
目前关于鞭毛马达响应环境刺激进行旋转的机制的知识主要来自对单端鞭毛菌和周生鞭毛菌的研究。对于所谓的两端鞭毛菌,其每个细胞极各有一根极鞭毛,它们如何协同作用以控制游动,人们了解甚少。在这里,我们用荧光标记了趋磁螺菌AMB-1细胞的鞭毛,并利用这种细菌的磁控游动特性来研究运动细胞中的鞭毛旋转。我们识别出三种运动行为(直行、翻滚和反转)以及两种可能对应于鞭毛向相反方向旋转的特征荧光模式。每个AMB-1运动模式都与两极特定的鞭毛模式系统地相关联,这使我们得出结论,虽然鞭毛马达的不对称旋转允许细胞直行,但它们的对称旋转会触发细胞翻滚。我们的观察结果表明,两个鞭毛马达之间存在精确的协调,在翻滚过程中它们可能会暂时不同步。
运动能力对于细菌寻找最佳生态位并生存至关重要。许多细菌利用一根或几根鞭毛来探索其环境。对于两极有鞭毛的细胞如何协调鞭毛旋转的机制,人们了解甚少。我们利用螺旋形趋磁细菌趋磁螺菌AMB-1的遗传易处理性和磁控游动特性,将细胞运动与鞭毛旋转相关联。我们发现鞭毛的不对称旋转(滞后极逆时针旋转,领先极顺时针旋转)使细胞能够直行,而对称旋转则触发细胞翻滚。考虑到在螺旋体(具有两极周质鞭毛带的细菌)中的类似观察结果,我们提出了一种适用于螺旋形两极有鞭毛细菌的保守运动模式。