Suppr超能文献

螺旋鞭毛推动微生物。

Propulsion of microorganisms by a helical flagellum.

机构信息

Department of Physics and Center for Nonlinear Dynamics, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E338-47. doi: 10.1073/pnas.1219831110. Epub 2013 Jan 14.

Abstract

The swimming of a bacterium or a biomimetic nanobot driven by a rotating helical flagellum is often interpreted using the resistive force theory developed by Gray and Hancock and by Lighthill, but this theory has not been tested for a range of physically relevant parameters. We test resistive force theory in experiments on macroscopic swimmers in a fluid that is highly viscous so the Reynolds number is small compared to unity, just as for swimming microorganisms. The measurements are made for the range of helical wavelengths λ, radii R, and lengths L relevant to bacterial flagella. The experiments determine thrust, torque, and drag, thus providing a complete description of swimming driven by a rotating helix at low Reynolds number. Complementary numerical simulations are conducted using the resistive force theories, the slender body theories of Lighthill and Johnson, and the regularized Stokeslet method. The experimental results differ qualitatively and quantitatively from the predictions of resistive force theory. The difference is especially large for and/or , parameter ranges common for bacteria. In contrast, the predictions of Stokeslet and slender body analyses agree with the laboratory measurements within the experimental uncertainty (a few percent) for all λ, R, and L. We present code implementing the slender body, regularized Stokeslet, and resistive force theories; thus readers can readily compute force, torque, and drag for any bacterium or nanobot driven by a rotating helical flagellum.

摘要

细菌或仿生纳米机器人在旋转螺旋鞭毛的驱动下的游动通常可以用 Gray 和 Hancock 以及 Lighthill 提出的阻力理论来解释,但该理论尚未针对一系列物理相关参数进行测试。我们在高粘度流体中对宏观游泳者进行了阻力理论测试,与微生物游泳相比,其雷诺数小,因此非常接近单位。测量范围涵盖了与细菌鞭毛相关的螺旋波长 λ、半径 R 和长度 L。实验确定了推力、扭矩和阻力,从而为低雷诺数下旋转螺旋驱动的游泳提供了完整的描述。使用阻力理论、Lighthill 和 Johnson 的细长体理论以及正则化 Stokeslet 方法进行了补充数值模拟。实验结果与阻力理论的预测在定性和定量上都存在差异。对于和/或参数范围常见的细菌,差异尤其大。相比之下,Stokeslet 和细长体分析的预测与实验室测量结果在实验不确定性(百分之几)内一致,适用于所有 λ、R 和 L。我们提供了实现细长体、正则化 Stokeslet 和阻力理论的代码;因此,读者可以轻松计算任何由旋转螺旋鞭毛驱动的细菌或纳米机器人的力、扭矩和阻力。

相似文献

1
Propulsion of microorganisms by a helical flagellum.螺旋鞭毛推动微生物。
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E338-47. doi: 10.1073/pnas.1219831110. Epub 2013 Jan 14.
2
Force-free swimming of a model helical flagellum in viscoelastic fluids.无应力螺旋形鞭毛在黏弹性流体中的自由游动。
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19516-20. doi: 10.1073/pnas.1113082108. Epub 2011 Nov 21.
3
Motor-driven bacterial flagella and buckling instabilities.电动细菌鞭毛与屈曲不稳定性
Eur Phys J E Soft Matter. 2012 Feb;35(2):15. doi: 10.1140/epje/i2012-12015-0. Epub 2012 Feb 29.
5
Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments.在非均匀粘性环境中增强的低雷诺数推进
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051911. doi: 10.1103/PhysRevE.80.051911. Epub 2009 Nov 18.
6
The efficiency of propulsion by a rotating flagellum.旋转鞭毛的推进效率。
Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11307-11. doi: 10.1073/pnas.94.21.11307.

引用本文的文献

1
Load-dependent resistive-force theory for helical filaments.螺旋丝的负载依赖阻力理论
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240260. doi: 10.1098/rsta.2024.0260.
2
Form and function in biological filaments: a physicist's review.生物细丝的形态与功能:物理学家的综述
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
10
The bank of swimming organisms at the micron scale (BOSO-Micro).微米尺度游泳生物库(BOSO-Micro)。
PLoS One. 2021 Jun 10;16(6):e0252291. doi: 10.1371/journal.pone.0252291. eCollection 2021.

本文引用的文献

1
Motor-driven bacterial flagella and buckling instabilities.电动细菌鞭毛与屈曲不稳定性
Eur Phys J E Soft Matter. 2012 Feb;35(2):15. doi: 10.1140/epje/i2012-12015-0. Epub 2012 Feb 29.
2
Force-free swimming of a model helical flagellum in viscoelastic fluids.无应力螺旋形鞭毛在黏弹性流体中的自由游动。
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19516-20. doi: 10.1073/pnas.1113082108. Epub 2011 Nov 21.
5
Force-extension curves of bacterial flagella.细菌鞭毛的力-伸长曲线。
Eur Phys J E Soft Matter. 2010 Nov;33(3):259-71. doi: 10.1140/epje/i2010-10664-5. Epub 2010 Nov 4.
7
Kinematics of the swimming of Spiroplasma.螺旋体游动的运动学
Phys Rev Lett. 2009 May 29;102(21):218102. doi: 10.1103/PhysRevLett.102.218102. Epub 2009 May 28.
9
Bacterial flagellar motor.细菌鞭毛马达
Curr Biol. 2008 Aug 26;18(16):R689-91. doi: 10.1016/j.cub.2008.07.015.
10
On torque and tumbling in swimming Escherichia coli.关于游泳大肠杆菌中的扭矩和翻滚
J Bacteriol. 2007 Mar;189(5):1756-64. doi: 10.1128/JB.01501-06. Epub 2006 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验