Varvas K, Järving I, Koljak R, Valmsen K, Brash A R, Samel N
Department of Bioorganic Chemistry, Institute of Chemistry, Tallinn Technical University, Akadeemia tee 15, Tallinn 12618, Estonia.
J Biol Chem. 1999 Apr 9;274(15):9923-9. doi: 10.1074/jbc.274.15.9923.
Certain corals are rich natural sources of prostaglandins, the metabolic origin of which has remained undefined. By analogy with the lipoxygenase/allene oxide synthase pathway to jasmonic acid in plants, the presence of (8R)-lipoxygenase and allene oxide synthase in the coral Plexaura homomalla suggested a potential metabolic route to prostaglandins (Brash, A. R., Baertshi, S. W., Ingram, C.D., and Harris, T. M. (1987) J. Biol. Chem. 262, 15829-15839). Other evidence, from the Arctic coral Gersemia fruticosa, has indicated a cyclooxygenase intermediate in the biosynthesis (Varvas, K., Koljak, R., Järving, I., Pehk, T., and Samel, N. (1994) Tetrahedron Lett. 35, 8267-8270). In the present study, active preparations of G. fruticosa have been used to identify both types of arachidonic acid metabolism and specific inhibitors were used to establish the enzyme type involved in the prostaglandin biosynthesis. The synthesis of prostaglandins and (11R)-hydroxyeicosatetraenoic acid was inhibited by mammalian cyclooxygenase inhibitors (indomethacin, aspirin, and tolfenamic acid), while the formation of the products of the 8-lipoxygenase/allene oxide pathway was not affected or was increased. The specific cyclooxygenase-2 inhibitor, nimesulide, did not inhibit the synthesis of prostaglandins in coral. We conclude that coral uses two parallel routes for the initial oxidation of polyenoic acids: the cyclooxygenase route, which leads to optically active prostaglandins, and the lipoxygenase/allene oxide synthase metabolism, the role of which remains to be established. An enzyme related to mammalian cyclooxygenases is the key to prostaglandin synthesis in coral. Based on our inhibitor data, the catalytic site of this evolutionary early cyclooxygenase appears to differ significantly from both known mammalian cyclooxygenases.
某些珊瑚是前列腺素丰富的天然来源,其代谢起源尚不清楚。通过与植物中通向茉莉酸的脂氧合酶/丙二烯氧化物合酶途径进行类比,珊瑚霍氏软珊瑚(Plexaura homomalla)中(8R)-脂氧合酶和丙二烯氧化物合酶的存在提示了一条通向前列腺素的潜在代谢途径(布拉什,A.R.,贝尔茨希,S.W.,英格拉姆,C.D.,和哈里斯,T.M.(1987年)《生物化学杂志》262卷,15829 - 15839页)。来自北极珊瑚小棒软珊瑚(Gersemia fruticosa)的其他证据表明在生物合成过程中有一个环氧化酶中间体(瓦尔瓦斯,K.,科尔亚克,R.,亚尔文,I.,佩赫克,T.,和萨梅尔,N.(1994年)《四面体快报》35卷,8267 - 8270页)。在本研究中,小棒软珊瑚的活性制剂已被用于鉴定花生四烯酸的两种代谢类型,并且使用了特异性抑制剂来确定参与前列腺素生物合成的酶类型。前列腺素和(11R)-羟基二十碳四烯酸的合成受到哺乳动物环氧化酶抑制剂(吲哚美辛、阿司匹林和托芬那酸)的抑制,而8 - 脂氧合酶/丙二烯氧化物途径产物的形成未受影响或有所增加。特异性环氧化酶 - 2抑制剂尼美舒利并未抑制珊瑚中前列腺素的合成。我们得出结论,珊瑚使用两条平行途径进行多烯酸的初始氧化:通向旋光性前列腺素的环氧化酶途径,以及脂氧合酶/丙二烯氧化物合酶代谢途径,其作用仍有待确定。一种与哺乳动物环氧化酶相关的酶是珊瑚中前列腺素合成的关键。基于我们的抑制剂数据,这种进化早期环氧化酶的催化位点似乎与已知的两种哺乳动物环氧化酶有显著差异。