Suppr超能文献

随机生成神经元中的信号。

Signals in stochastically generated neurons.

作者信息

Winslow J L, Jou S F, Wang S, Wojtowicz J M

机构信息

Physiology Department and Institute of Biomedical Engineering, University of Toronto, Ont.

出版信息

J Comput Neurosci. 1999 Jan;6(1):5-26. doi: 10.1023/a:1008893415203.

Abstract

To incorporate variation of neuron shape in neural models, we developed a method of generating a population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distances to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions provide a means of treating these morphological parameters as stochastic variables in an algorithm for production of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule cells. A large part of the variation of whole neuron input resistance R(N) is due to variation in shape. Membrane resistivity Rm computed from R(N) varies accordingly. Statistics of responses to synaptic activation were computed for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site, and attribute of response.

摘要

为了在神经模型中纳入神经元形状的变化,我们开发了一种生成具有逼真形状的神经元群体的方法。表征神经元的参数包括胞体直径、到分支点的距离、纤维直径以及整个树突树的形状和大小。实验测量的分布提供了一种在神经元生成算法中将这些形态学参数视为随机变量的方法。随机生成的神经元形状被用于海马齿状回颗粒细胞模型。整个神经元输入电阻R(N)的很大一部分变化是由于形状的变化。根据R(N)计算出的膜电阻率Rm也相应变化。针对不同的树突形状计算了对突触激活的反应统计数据。反应变化的幅度取决于突触位置、测量部位和反应属性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验