Thomas S R, Stabin M G, Chen C T, Samaratunga R C
Department of Radiology, University of Cincinnati College of Medicine, Ohio 45267-0579, USA.
J Nucl Med. 1999 Apr;40(4):102S-123S.
The constant-volume urinary bladder model in the standard MIRD Pamphlet No. 5 (Revised) phantom has recognized limitations. Various investigators have developed detailed models incorporating more physiologically realistic features, such as expanding bladder contents and residual volume, and variable urinary input rate, initial volume and first void time. We have reviewed these published models and have developed a new model for calculation of radiation absorbed dose to the urinary bladder wall incorporating these aspects.
The model consists of a spherical source with variable volume to simulate the bladder contents and a wall represented by a spherical shell of constant volume. The wall thickness varies as the source expands or contracts. The model provides for variable urine entry rate (three different hydration states), initial bladder contents volume, residual volume and first void time. The voiding schedule includes an extended nighttime gap during which the urine entry rate is reduced to one-half the daytime rate.
Radiation-absorbed dose estimates have been calculated for the bladder wall surface (including photon and electron components) and at several depths in the wall (electron component) for 2-18F-fluoro-2-deoxy-D-glucose, 99mTc-diethylenetriaminepentaacetic acid (DTPA), 99mTc-HEDP, 99mTc-pertechnetate, 99mTc-red blood cells (RBCs), 99mTc-glucoheptonate, 99mTc-mercaptoacetyltriglicine chelator (MAG3), 99mTc-methylene diphosphonate (MDP), 99mTc-hexamethylpropylene amine oxime (HMPAO), 99mTc-human serum albumin (HSA), 99mTc-MIBI (rest and stress), 123I-/124I-/131I-OIH, 123I/131I-NaI, 125I-iothalamate, 111In-DTPA and 89Sr-SrCl.
The new model tends to give a higher radiation absorbed dose to the bladder wall surface than the previous models. Large initial bladder volumes and higher rates of urine flow into the bladder result in lower bladder wall dose. The optimal first voiding time is from 40 min to 3 hr postadministration, depending on radiopharmaceutical. The data as presented in tabular and graphic form for each compound provide guidance for establishing radiation absorbed dose reduction protocols.
标准MIRD手册第5号(修订版)体模中的定容膀胱模型存在公认的局限性。许多研究者已开发出包含更多生理现实特征的详细模型,如膀胱内容物扩张、残余尿量、可变的尿液输入速率、初始体积和首次排尿时间。我们回顾了这些已发表的模型,并开发了一个新模型来计算膀胱壁的辐射吸收剂量,该模型纳入了这些方面。
该模型由一个体积可变的球形源模拟膀胱内容物,以及一个由恒定体积的球壳表示的壁组成。壁的厚度随源的扩张或收缩而变化。该模型考虑了可变的尿液进入速率(三种不同的水合状态)、初始膀胱内容物体积、残余体积和首次排尿时间。排尿时间表包括一个延长的夜间间隙,在此期间尿液进入速率降至白天速率的一半。
已计算出2-18F-氟-2-脱氧-D-葡萄糖、99mTc-二乙三胺五乙酸(DTPA)、99mTc-羟乙二膦酸(HEDP)、99mTc-高锝酸盐、99mTc-红细胞(RBC)、99mTc-葡庚糖酸盐、99mTc-巯基乙酰三甘氨酸螯合剂(MAG3)、99mTc-亚甲基二膦酸盐(MDP)、99mTc-六甲基丙烯胺肟(HMPAO)、99mTc-人血清白蛋白(HSA)、99mTc-甲氧基异丁基异腈(MIBI)(静息和负荷状态)、123I-/124I-/131I-奥曲肽、123I/131I-碘化钠、125I-碘肽酸盐、111In-DTPA和89Sr-氯化锶在膀胱壁表面(包括光子和电子成分)以及壁内几个深度处(电子成分)的辐射吸收剂量估计值。
新模型往往比以前的模型给出更高的膀胱壁表面辐射吸收剂量。较大的初始膀胱体积和较高的尿液流入膀胱速率会导致较低的膀胱壁剂量。最佳首次排尿时间为给药后40分钟至3小时,具体取决于放射性药物。以表格和图形形式呈现的每种化合物的数据为制定辐射吸收剂量降低方案提供了指导。