Suppr超能文献

使用数据驱动的贝叶斯信念网络进行乳腺癌的计算机辅助诊断。

Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network.

作者信息

Wang X H, Zheng B, Good W F, King J L, Chang Y H

机构信息

Department of Radiology, University of Pittsburgh, PA 15261-0001, USA.

出版信息

Int J Med Inform. 1999 May;54(2):115-26. doi: 10.1016/s1386-5056(98)00174-9.

Abstract

This study investigates a simple Bayesian belief network for the diagnosis of breast cancer, and specifically addresses the question of whether integrating image and non-image based features into a single network can yield better performance than hybrid combinations of independent networks. From a dataset of 419 cases, including 92 malignancies, 13 features relating to mammographic findings, physical examinations and patients' clinical histories, were extracted to build three Bayesian belief networks. The scenarios tested included a network incorporating all features and two hybrids which combined the outputs of sub-networks corresponding to the image or non-image features. Average areas (Az) under the corresponding ROC curves were used as measures of performance. The network incorporating only image based features performed better (Az =0.81) than that using nonimage features (Az = 0.71). Both hybrid classifiers yielded better performance (Az =0.85 for averaging and Az = 0.87 for logistic regression), but neither hybrid was as accurate as the network incorporating all features (Az = 0.89). This preliminary study suggests that, like human observers who concurrently consider different types of information, a single classifier that simultaneously evaluates both image and non-image information can achieve better diagnostic performance than the hybrid combinations considered here.

摘要

本研究调查了一种用于乳腺癌诊断的简单贝叶斯信念网络,特别探讨了将基于图像和非图像的特征整合到单个网络中是否能比独立网络的混合组合产生更好的性能。从一个包含419个病例的数据集(其中包括92个恶性肿瘤病例)中,提取了与乳房X线摄影结果、体格检查和患者临床病史相关的13个特征,以构建三个贝叶斯信念网络。测试的场景包括一个包含所有特征的网络以及两个混合网络,这两个混合网络将对应于图像或非图像特征的子网络输出进行了合并。使用相应ROC曲线下的平均面积(Az)作为性能指标。仅包含基于图像特征的网络表现优于使用非图像特征的网络(Az = 0.81)(Az = 0.71)。两个混合分类器都产生了更好的性能(平均法的Az = 0.85,逻辑回归法的Az = 0.87),但没有一个混合网络像包含所有特征的网络那样准确(Az = 0.89)。这项初步研究表明,与同时考虑不同类型信息的人类观察者一样,一个同时评估图像和非图像信息的单一分类器可以比这里考虑的混合组合实现更好的诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验