Suppr超能文献

基于从多模态磁共振成像中提取特征的贝叶斯网络进行脑胶质瘤分级

Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging.

作者信息

Hu Jisu, Wu Wenbo, Zhu Bin, Wang Huiting, Liu Renyuan, Zhang Xin, Li Ming, Yang Yongbo, Yan Jing, Niu Fengnan, Tian Chuanshuai, Wang Kun, Yu Haiping, Chen Weibo, Wan Suiren, Sun Yu, Zhang Bing

机构信息

The Laboratory for Medical Electronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.

出版信息

PLoS One. 2016 Apr 14;11(4):e0153369. doi: 10.1371/journal.pone.0153369. eCollection 2016.

Abstract

Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance.

摘要

许多磁共振成像(MRI)模式已被证实对胶质瘤分级具有重要的诊断价值。对比增强T1加权成像可识别血脑屏障破坏情况。灌注加权成像和磁共振波谱成像分别能够定量测量灌注参数和代谢改变。如果合理组合,这些模式有可能改善胶质瘤的分级过程。在本研究中,贝叶斯网络作为一种在不确定性下进行概率分析的强大且灵活的方法,被用于组合从对比增强T1加权成像、灌注加权成像和磁共振波谱成像中提取的特征。网络使用K2算法构建,并结合人工确定,分布参数通过最大似然估计学习得到。在留一法分析中评估分级性能,在总共56例患者中观察到所有可用特征的情况下,在接受者操作特征分析中总体分级准确率达到92.86%,曲线下面积为0.9577。结果与讨论表明,贝叶斯网络在组合多种MRI模式的特征以提高分级性能方面具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7cc/4831834/a8b5f91d26e7/pone.0153369.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验