Yan C H, Whalen R T, Beaupré G S, Yen S Y, Napel S
Department of Electrical Engineering, Stanford University, California 94305, USA.
Med Phys. 1999 Apr;26(4):631-42. doi: 10.1118/1.598563.
This paper presents a procedure for estimating an accurate model of the CT imaging process including spectral effects. As raw projection data are typically unavailable to the end-user, we adopt a post-processing approach that utilizes the reconstructed images themselves. This approach includes errors from x-ray scatter and the nonidealities of the built-in soft tissue correction into the beam characteristics, which is crucial to beam hardening correction algorithms that are designed to be applied directly to CT reconstructed images. We formulate this approach as a quadratic programming problem and propose two different methods, dimension reduction and regularization, to overcome ill conditioning in the model. For the regularization method we use a statistical procedure, Cross Validation, to select the regularization parameter. We have constructed step-wedge phantoms to estimate the effective beam spectrum of a GE CT-I scanner. Using the derived spectrum, we computed the attenuation ratios for the wedge phantoms and found that the worst case modeling error is less than 3% of the corresponding attenuation ratio. We have also built two test (hybrid) phantoms to evaluate the effective spectrum. Based on these test phantoms, we have shown that the effective beam spectrum provides an accurate model for the CT imaging process. Last, we used a simple beam hardening correction experiment to demonstrate the effectiveness of the estimated beam profile for removing beam hardening artifacts. We hope that this estimation procedure will encourage more independent research on beam hardening corrections and will lead to the development of application-specific beam hardening correction algorithms.
本文提出了一种用于估计包含光谱效应的CT成像过程精确模型的方法。由于最终用户通常无法获取原始投影数据,我们采用一种后处理方法,该方法利用重建图像本身。这种方法包括来自X射线散射的误差以及内置软组织校正到光束特性中的非理想性,这对于设计用于直接应用于CT重建图像的束硬化校正算法至关重要。我们将此方法公式化为一个二次规划问题,并提出两种不同的方法,即降维和正则化,以克服模型中的病态问题。对于正则化方法,我们使用一种统计程序,即交叉验证,来选择正则化参数。我们构建了阶梯状模体来估计GE CT-I扫描仪的有效束光谱。使用导出的光谱,我们计算了楔形模体的衰减率,发现最坏情况下的建模误差小于相应衰减率的3%。我们还构建了两个测试(混合)模体来评估有效光谱。基于这些测试模体,我们表明有效束光谱为CT成像过程提供了一个精确模型。最后,我们使用一个简单的束硬化校正实验来证明估计的束轮廓对于去除束硬化伪影的有效性。我们希望这种估计程序将鼓励更多关于束硬化校正的独立研究,并将导致开发特定应用的束硬化校正算法。