Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
School of Information Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
Phys Med Biol. 2021 Mar 12;66(6):065025. doi: 10.1088/1361-6560/abe026.
Beam hardening in x-ray computed tomography (CT) is inevitable because of the polychromatic x-ray spectrum and energy-dependent attenuation coefficients of materials, leading to the underestimation of artifacts arising from projection data, especially on metal regions. State-of-the-art research on beam-hardening artifacts is based on a numerical method that recursively performs CT reconstruction, which leads to a heavy computational burden. To address this computational issue, we propose a constrained beam-hardening estimator that provides an efficient numerical solution via a linear combination of two images reconstructed only once during the entire process. The proposed estimator reflects the geometry of metal objects and physical characteristics of beam hardening during the transmission of polychromatic x-rays through a material. Most of the associated parameters are numerically obtained from an initial uncorrected CT image and forward projection transformation without additional optimization procedures. Only the unknown parameter related to beam-hardening artifacts is fine-tuned by linear optimization, which is performed only in the reconstruction image domain. The proposed approach was systematically assessed using numerical simulations and phantom data for qualitative and quantitative comparisons. Compared with existing sinogram inpainting-based and model-based approaches, the proposed scheme in conjunction with the constrained beam-hardening estimator not only provided improved image quality in areas surrounding the metal but also achieved fast beam-hardening correction owing to the analytical reconstruction structure. This work may have significant implications in improving dose calculation accuracy or target volume delineation for treatment planning in radiotherapy.
X 射线计算机断层扫描(CT)中的射束硬化是不可避免的,这是由于多色 X 射线光谱和材料的能量相关衰减系数所致,这会导致来自投影数据的伪影(特别是金属区域的伪影)被低估。目前针对射束硬化伪影的研究主要基于一种数值方法,该方法通过递归执行 CT 重建来进行,这会导致计算负担很重。为了解决这个计算问题,我们提出了一种约束射束硬化估计器,它通过仅在整个过程中重建一次的两个图像的线性组合提供了一种有效的数值解决方案。所提出的估计器反映了金属物体的几何形状和多色 X 射线穿过材料时的射束硬化的物理特性。大多数相关参数都是从初始未校正的 CT 图像和正向投影变换中数值获得的,无需额外的优化程序。仅与射束硬化伪影相关的未知参数通过线性优化进行微调,该优化仅在重建图像域中进行。使用数值模拟和体模数据对所提出的方法进行了系统评估,以进行定性和定量比较。与现有的基于正弦图修复和基于模型的方法相比,所提出的方案与约束射束硬化估计器相结合,不仅在金属周围区域提供了更好的图像质量,而且由于分析重建结构,还实现了快速的射束硬化校正。这项工作可能对提高放射治疗中的剂量计算准确性或靶区勾画具有重要意义。