Suppr超能文献

通过复杂度测量检测室性心动过速和颤动。

Detecting ventricular tachycardia and fibrillation by complexity measure.

作者信息

Zhang X S, Zhu Y S, Thakor N V, Wang Z Z

机构信息

Department of Biomedical Engineering, College of Life Science and Biotechnology, Shanghai Jiao Tong University, China.

出版信息

IEEE Trans Biomed Eng. 1999 May;46(5):548-55. doi: 10.1109/10.759055.

Abstract

Sinus rhythm (SR), ventricular tachycardia (VT) and ventricular fibrillation (VF) belong to different nonlinear physiological processes with different complexity. In this study, we present a novel, and computationally fast method to detect VT and VF, which utilizes a complexity measure suggested by Lempel and Ziv [1]. For a specific window length (i.e., the length of data segment to be analyzed), the method first generates a 0-1 string by comparing the raw electrocardiogram (ECG) data to a selected suitable threshold. The complexity measure can be obtained from the 0-1 string only using two simple operations, comparison and accumulation. When the window length is 7 s, the detection accuracy for each of SR, VT, and VF is 100% for a test set of 204 body surface records (34 SR, 85 monomorphic VT, and 85 VF). Compared with other conventional time- and frequency-domain methods, such as rate and irregularity, VF-filter leakage, and sequential hypothesis testing, the new algorithm is simple, computationally efficient, and well suited for real-time implementation in automatic external defibrillators (AED's).

摘要

窦性心律(SR)、室性心动过速(VT)和心室颤动(VF)属于不同复杂度的非线性生理过程。在本研究中,我们提出了一种新颖且计算快速的方法来检测VT和VF,该方法利用了由莱普尔(Lempel)和齐夫(Ziv)[1]提出的一种复杂度度量。对于特定的窗口长度(即要分析的数据段长度),该方法首先通过将原始心电图(ECG)数据与选定的合适阈值进行比较来生成一个0-1字符串。仅使用比较和累加这两个简单操作就可以从该0-1字符串中获得复杂度度量。当窗口长度为7秒时,对于包含204份体表记录(34份SR、85份单形性VT和85份VF)的测试集,SR、VT和VF各自的检测准确率均为100%。与其他传统的时域和频域方法,如心率和不规则度、VF滤波器泄漏以及序贯假设检验相比,新算法简单、计算效率高,非常适合在自动体外除颤器(AED)中进行实时实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验