Suppr超能文献

基于平均信号强度和 EMD 函数的危及生命的心脏病理检测的序贯算法。

Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions.

机构信息

Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

出版信息

Biomed Eng Online. 2010 Sep 4;9:43. doi: 10.1186/1475-925X-9-43.

Abstract

BACKGROUND

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the most serious cardiac arrhythmias that require quick and accurate detection to save lives. Automated external defibrillators (AEDs) have been developed to recognize these severe cardiac arrhythmias using complex algorithms inside it and determine if an electric shock should in fact be delivered to reset the cardiac rhythm and restore spontaneous circulation. Improving AED safety and efficacy by devising new algorithms which can more accurately distinguish shockable from non-shockable rhythms is a requirement of the present-day because of their uses in public places.

METHOD

In this paper, we propose a sequential detection algorithm to separate these severe cardiac pathologies from other arrhythmias based on the mean absolute value of the signal, certain low-order intrinsic mode functions (IMFs) of the Empirical Mode Decomposition (EMD) analysis of the signal and a heart rate determination technique. First, we propose a direct waveform quantification based approach to separate VT plus VF from other arrhythmias. The quantification of the electrocardiographic waveforms is made by calculating the mean absolute value of the signal, called the mean signal strength. Then we use the IMFs, which have higher degree of similarity with the VF in comparison to VT, to separate VF from VTVF signals. At the last stage, a simple rate determination technique is used to calculate the heart rate of VT signals and the amplitude of the VF signals is measured to separate the coarse VF from VF. After these three stages of sequential detection procedure, we recognize the two components of shockable rhythms separately.

RESULTS

The efficacy of the proposed algorithm has been verified and compared with other existing algorithms, e.g., HILB 1, PSR 2, SPEC 3, TCI 4, Count 5, using the MIT-BIH Arrhythmia Database, Creighton University Ventricular Tachyarrhythmia Database and MIT-BIH Malignant Ventricular Arrhythmia Database. Four quality parameters (e.g., sensitivity, specificity, positive predictivity, and accuracy) were calculated to ascertain the quality of the proposed and other comparing algorithms. Comparative results have been presented on the identification of VTVF, VF and shockable rhythms (VF + VT above 180 bpm).

CONCLUSIONS

The results show significantly improved performance of the proposed EMD-based novel method as compared to other reported techniques in detecting the life threatening cardiac arrhythmias from a set of large databases.

摘要

背景

室性心动过速(VT)和心室颤动(VF)是最严重的心律失常,需要快速准确地检测以挽救生命。自动体外除颤器(AED)已经被开发出来,通过其内部的复杂算法来识别这些严重的心律失常,并确定是否应该实际给予电击以重置心脏节律并恢复自主循环。由于它们在公共场所的使用,设计能够更准确地区分可电击与不可电击节律的新算法是提高 AED 安全性和有效性的要求。

方法

在本文中,我们提出了一种基于信号的均值绝对值、信号经验模态分解(EMD)分析的某些低阶固有模式函数(IMF)和心率确定技术的顺序检测算法,用于将这些严重的心脏病理与其他心律失常区分开来。首先,我们提出了一种直接基于波形量化的方法,用于将 VT 加 VF 与其他心律失常区分开来。心电图波形的量化是通过计算信号的均值绝对值,即信号强度均值来实现的。然后,我们使用与 VT 相比与 VF 具有更高相似度的 IMF,将 VF 与 VTVF 信号区分开来。在最后阶段,使用简单的心率确定技术计算 VT 信号的心率,并测量 VF 信号的幅度,以将粗 VF 与 VF 区分开来。经过这三个顺序检测步骤后,我们分别识别出可电击节律的两个组成部分。

结果

使用 MIT-BIH 心律失常数据库、Creighton 大学室性心动过速数据库和 MIT-BIH 恶性室性心律失常数据库,对所提出的算法的有效性进行了验证,并与其他现有的算法(例如 HILB1、PSR2、SPEC3、TCI4、Count5)进行了比较。使用四个质量参数(例如灵敏度、特异性、阳性预测值和准确性)来确定所提出的和其他比较算法的质量。对识别 VTVF、VF 和可电击节律(VF+VT 高于 180 bpm)的比较结果进行了展示。

结论

结果表明,与其他报道的技术相比,基于 EMD 的新方法在从一组大型数据库中检测危及生命的心律失常方面具有显著提高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feca/2944264/67fff333516f/1475-925X-9-43-9.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验