Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
National Research University Higher School of Economics, 101000 Moscow, Russia.
Int J Mol Sci. 2022 Aug 17;23(16):9221. doi: 10.3390/ijms23169221.
Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting "dynamic MHP portraits" and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins.
理解 SARS-CoV-2 刺突蛋白所采用的融合机制需要真实的跨膜域 (TMD) 模型,而目前还没有可靠的方法来预测跨膜 (TM) 三聚体的 3D 结构。在这里,我们提出了一个全面的计算框架,仅基于刺突 TMD 的一级结构来对其进行建模。我们进行了氨基酸序列模式匹配,并将螺旋表面的分子疏水性势能 (MHP) 分布与具有已知 3D 结构的 TM 同源三聚体进行了比较,并选择了一个合适的模板进行同源建模。然后,我们迭代构建了刺突 TMD 的模型,调整了“动态 MHP 图”和残基变异性基序。在模拟病毒包膜的 POPC 双层中,我们在全原子分子动力学模拟中测试了该模型在 TMD 下游有无棕榈酰化修饰以及几种替代构象(包括最近的 NMR 结构)的稳定性。我们的模型在应用的条件下表现出独特的稳定性,并符合 TM 螺旋包装的已知基本原则。原始的计算框架看起来很有前途,并可能被用于构建广泛的膜蛋白的 TM 三聚体的 3D 模型。