Wimley W C, Creamer T P, White S H
Department of Physiology and Biophysics, University of California Irvine 92717-4560, USA.
Biochemistry. 1996 Apr 23;35(16):5109-24. doi: 10.1021/bi9600153.
Octanol-to-water solvation free energies of acetyl amino amides (Ac-X-amides) [Fauchère, J.L., & Pliska, V. (1983) Eur. J. Med. Chem. --Chim. Ther. 18,369] form the basis for computational comparisons of protein stabilities by means of the atomic solvation parameter formalism of Eisenberg and McLachlan [(1986) Nature 319, 199]. In order to explore this approach for more complex systems, we have determined by octanol-to-water partitioning the solvation energies of (1) the guest (X) side chains in the host-guest pentapeptides AcWL-X-LL, (2) the carboxy terminus of the pentapeptides, and (3) the peptide bonds of the homologous series of peptides AcWLm (m = 1-6). Solvation parameters were derived from the solvation energies using estimates of the solvent-accessible surface areas (ASA) obtained from hard-sphere Monte Carlo simulations. The measurements lead to a side chain solvation-energy scale for the pentapeptides and suggest the need for modifying the Asp, Glu, and Cys values of the "Fauchère-Pliska" solvation-energy scale fro the Ac-X-amides. We find that the unfavorable solvation energy of nonpolar residues can be calculated accurately by a solvation parameter of 22.8 +/- 0.8 cal/mol/A2, which agrees satisfactorily with the AC-X-amide data and thereby validates the Monte Carlo ASA results. Unlike the Ac-X-amide data, the apparent solvation energies of the uncharged polar residues are also largely unfavorable. This unexpected finding probably results, primarily, from differences in conformation and hydrogen bonding in octanol and buffer but may also be due to the additional flaking peptide bonds of the pentapeptides. The atomic solvation parameter (ASP) for the peptide bond is comparable to the ASP of the charged carboxy terminus which is an order of magnitude larger than the ASP of the uncharged polar side chains of the Ac-X-amides. The very large peptide bond ASP, -96 +/- 6 cal/mol/A2, profoundly affects the results of computational comparisons of protein stability which use ASPs derived from octanol-water partitioning data.
乙酰氨基酰胺(Ac-X-酰胺)的正辛醇-水溶剂化自由能[福谢尔,J.L.,& 普利什卡,V.(1983年)《欧洲药物化学杂志——化学治疗》18卷,369页]构成了借助艾森伯格和麦克拉克伦的原子溶剂化参数形式体系(1986年《自然》319卷,199页)对蛋白质稳定性进行计算比较的基础。为了探索这种适用于更复杂体系的方法,我们通过正辛醇-水分配法测定了以下几种物质的溶剂化能:(1)主客体五肽AcWL-X-LL中客体(X)侧链的溶剂化能;(2)五肽的羧基末端的溶剂化能;(3)同源肽系列AcWLm(m = 1 - 6)的肽键的溶剂化能。溶剂化参数是利用从硬球蒙特卡罗模拟获得的溶剂可及表面积(ASA)估计值,从溶剂化能推导出来的。这些测量结果得出了五肽的侧链溶剂化能标度,并表明需要修改Ac-X-酰胺的“福谢尔-普利什卡”溶剂化能标度中Asp、Glu和Cys的值。我们发现,非极性残基的不利溶剂化能可以通过一个22.8 ± 0.8卡/摩尔/A²的溶剂化参数准确计算出来,这与Ac-X-酰胺的数据令人满意地吻合,从而验证了蒙特卡罗ASA的结果。与Ac-X-酰胺的数据不同,不带电荷的极性残基的表观溶剂化能在很大程度上也是不利的。这一意外发现可能主要是由于正辛醇和缓冲液中构象和氢键的差异,但也可能是由于五肽额外的片状肽键所致。肽键的原子溶剂化参数(ASP)与带电荷的羧基末端的ASP相当,后者比Ac-X-酰胺不带电荷的极性侧链的ASP大一个数量级。非常大的肽键ASP,- 96 ± 6卡/摩尔/A²,深刻影响了使用从正辛醇-水分配数据推导出来的ASP进行蛋白质稳定性计算比较的结果。