Suppr超能文献

阿伯克龙比提出细胞爬行理论二十年后。

Cell crawling two decades after Abercrombie.

作者信息

Stossel T P, Hartwig J H, Janmey P A, Kwiatkowski D J

机构信息

Brigham & Womens Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Biochem Soc Symp. 1999;65:267-80.

Abstract

In response to extracellular signals, cells remodel actin networks. Monomeric actin subunits at the cell's leading edge assemble into linear polymers that are cross-linked by accessory proteins into three-dimensional structures that are contracted by myosins to generate hydraulic force; elsewhere in the cell, actin networks dismantle. Actin subunit sequestering proteins prevent spontaneous actin nucleation, but not the growth of actin sub-units on to fast-growing filament ('barbed') ends, and at least half of the actin in most cells is filamentous. Therefore regulation of cellular actin assembly also requires proteins that block ('cap') actin filament barbed ends. Members of the capping protein gelsolin family also sever actin filaments mechanically. Calcium and protons activate gelsolin for severing and capping. Phosphoinositides reverse such capping, and a pathway has been defined in which receptor perturbation operates through GTP-Rac1 to stimulate the synthesis of endogenous phosphoinositides that uncap actin filaments. Other GTPases (and other signalling pathways) target phosphoinositide synthesis where other protrusions (e.g. filopodia) emerge. Cells maintain adequate, albeit compromised, locomotion in the absence of some, but not all, important machine parts. For example, gelsolin-null fibroblasts crawl using predominantly filopodia rather than lamellae. However, ABP-280 (actin-binding protein of 280 kDa), which promotes orthogonal branching of short actin filaments, seems to be necessary for membrane stability and translational locomotion. ABP-null cells hardly crawl at all, although they are viable and engage in surface movements.

摘要

作为对细胞外信号的响应,细胞会重塑肌动蛋白网络。细胞前沿的单体肌动蛋白亚基组装成线性聚合物,这些聚合物通过辅助蛋白交联形成三维结构,由肌球蛋白收缩以产生液压;在细胞的其他部位,肌动蛋白网络则会解体。肌动蛋白亚基隔离蛋白可防止肌动蛋白自发成核,但不会阻止肌动蛋白亚基在快速生长的细丝(“带刺”)末端生长,并且大多数细胞中至少一半的肌动蛋白是丝状的。因此,细胞肌动蛋白组装的调节还需要能够阻断(“帽化”)肌动蛋白丝带刺末端的蛋白质。帽化蛋白凝溶胶蛋白家族的成员也会机械切断肌动蛋白丝。钙和质子激活凝溶胶蛋白进行切断和帽化。磷酸肌醇会逆转这种帽化作用,并且已经确定了一条途径,其中受体扰动通过GTP-Rac1起作用,以刺激内源性磷酸肌醇的合成,从而解开肌动蛋白丝的帽。其他GTP酶(和其他信号通路)在其他突起(如丝状伪足)出现的地方靶向磷酸肌醇合成。在缺少一些但不是所有重要组成部分的情况下,细胞仍能维持足够的、尽管有所受损的运动能力。例如,缺乏凝溶胶蛋白的成纤维细胞主要利用丝状伪足而非片状伪足爬行。然而,促进短肌动蛋白丝正交分支的ABP-280(280 kDa的肌动蛋白结合蛋白)似乎对膜稳定性和平移运动是必需的。缺乏ABP的细胞几乎根本不爬行,尽管它们能够存活并进行表面运动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验