Suppr超能文献

高尔顿-沃森分支过程作为寄生虫学中的一种定量工具。

The Galton-Watson branching process as a quantitative tool in parasitology.

作者信息

Taneyhill D E, Dunn A M, Hatcher M J

机构信息

School of Biology, University of Leeds, Leeds, UK.

出版信息

Parasitol Today. 1999 Apr;15(4):159-65. doi: 10.1016/s0169-4758(99)01417-9.

Abstract

Stochastic growth processes abound in the biology of parasitism, and one mathematical tool that is particularly well suited for describing such phenomena is the Galton-Watson branching process. Introduced more than a century ago to settle a debate over the rate of disappearance of surnames in the British peerage, branching processes are applied today in fields as diverse as quantum physics and theoretical computer science. In this article, Dale Taneyhill, Alison Dunn and Melanie Hatcher provide a simple introduction to branching processes, and demonstrate their uses in quantitative parasitology.

摘要

随机增长过程在寄生生物学中比比皆是,而高尔顿-沃森分支过程是一种特别适合描述此类现象的数学工具。一个多世纪前,为了解决关于英国贵族姓氏消失率的争论而引入了分支过程,如今它在量子物理学和理论计算机科学等诸多领域都有应用。在本文中,戴尔·塔尼希尔、艾莉森·邓恩和梅兰妮·哈奇特对分支过程进行了简单介绍,并展示了它们在定量寄生虫学中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验