Kammerer Niels B, Stummer Wolfgang
Königinstrasse 75, 80539 Munich, Germany.
Department of Mathematics, University of Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany.
Entropy (Basel). 2020 Aug 8;22(8):874. doi: 10.3390/e22080874.
We compute exact values respectively bounds of dissimilarity/distinguishability measures-in the sense of the Kullback-Leibler information distance (relative entropy) and some transforms of more general power divergences and Renyi divergences-between two competing discrete-time GWI for which the offspring as well as the immigration (importation) is arbitrarily Poisson-distributed; especially, we allow for arbitrary type of extinction-concerning criticality and thus for non-stationarity. We apply this to optimal decision making in the context of the spread of potentially pandemic infectious diseases (such as e.g., the current COVID-19 pandemic), e.g., covering different levels of dangerousness and different kinds of intervention/mitigation strategies. Asymptotic distinguishability behaviour and diffusion limits are investigated, too.
我们分别计算了两个相互竞争的离散时间广义波利亚瓮模型(GWI)之间的差异/可区分性度量的精确值和边界——在库尔贝克-莱布勒信息距离(相对熵)以及更一般的幂散度和雷尼散度的某些变换的意义下,其中后代以及移民(输入)是任意泊松分布的;特别是,我们允许任意类型的与灭绝相关的临界性,从而允许非平稳性。我们将此应用于潜在大流行传染病(如当前的COVID-19大流行)传播背景下的最优决策,例如,涵盖不同程度的危险性和不同类型的干预/缓解策略。还研究了渐近可区分性行为和扩散极限。