Suppr超能文献

分支过程的一些差异度量以及潜在大流行情况下的最优决策

Some Dissimilarity Measures of Branching Processes and Optimal Decision Making in the Presence of Potential Pandemics.

作者信息

Kammerer Niels B, Stummer Wolfgang

机构信息

Königinstrasse 75, 80539 Munich, Germany.

Department of Mathematics, University of Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany.

出版信息

Entropy (Basel). 2020 Aug 8;22(8):874. doi: 10.3390/e22080874.

Abstract

We compute exact values respectively bounds of dissimilarity/distinguishability measures-in the sense of the Kullback-Leibler information distance (relative entropy) and some transforms of more general power divergences and Renyi divergences-between two competing discrete-time GWI for which the offspring as well as the immigration (importation) is arbitrarily Poisson-distributed; especially, we allow for arbitrary type of extinction-concerning criticality and thus for non-stationarity. We apply this to optimal decision making in the context of the spread of potentially pandemic infectious diseases (such as e.g., the current COVID-19 pandemic), e.g., covering different levels of dangerousness and different kinds of intervention/mitigation strategies. Asymptotic distinguishability behaviour and diffusion limits are investigated, too.

摘要

我们分别计算了两个相互竞争的离散时间广义波利亚瓮模型(GWI)之间的差异/可区分性度量的精确值和边界——在库尔贝克-莱布勒信息距离(相对熵)以及更一般的幂散度和雷尼散度的某些变换的意义下,其中后代以及移民(输入)是任意泊松分布的;特别是,我们允许任意类型的与灭绝相关的临界性,从而允许非平稳性。我们将此应用于潜在大流行传染病(如当前的COVID-19大流行)传播背景下的最优决策,例如,涵盖不同程度的危险性和不同类型的干预/缓解策略。还研究了渐近可区分性行为和扩散极限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b30/7517477/1707dfead93e/entropy-22-00874-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验