Sandhu H, Wiesenthal S R, MacDonald P E, McCall R H, Tchipashvili V, Rashid S, Satkunarajah M, Irwin D M, Shi Z Q, Brubaker P L, Wheeler M B, Vranic M, Efendic S, Giacca A
Department of Physiology, University of Toronto, Ontario, Canada.
Diabetes. 1999 May;48(5):1045-53. doi: 10.2337/diabetes.48.5.1045.
To determine whether glucagon-like peptide (GLP)-1 increases insulin sensitivity in addition to stimulating insulin secretion, we studied totally depancreatized dogs to eliminate GLP-1's incretin effect. Somatostatin was infused (0.8 microg x kg(-1) x min(-1)) to inhibit extrapancreatic glucagon in dogs, and basal glucagon was restored by intraportal infusion (0.65 ng x kg(-1) x min(-1)). To simulate the residual intraportal insulin secretion in type 2 diabetes, basal intraportal insulin infusion was given to obtain plasma glucose concentrations of approximately 10 mmol/l. Glucose was clamped at this level for the remainder of the experiment, which included peripheral insulin infusion (high dose, 5.4 pmol x kg(-1) x min(-1), or low dose, 0.75 pmol x kg(-1) x min(-1)) with or without GLP-1(7-36) amide (1.5 pmol x kg(-1) x min(-1)). Glucose production and utilization were measured with 3-[3H]glucose, using radiolabeled glucose infusates. In 12 paired experiments with six dogs at the high insulin dose, GLP-1 infusion resulted in higher glucose requirements than saline (60.9+/-11.0 vs. 43.6+/-8.3 micromol x kg(-1) x min(-1), P< 0.001), because of greater glucose utilization (72.6+/-11.0 vs. 56.8+/-9.7 micromol x kg(-1) x min(-1), P<0.001), whereas the suppression of glucose production was not affected by GLP-1. Free fatty acids (FFAs) were significantly lower with GLP-1 than saline (375.3+/-103.0 vs. 524.4+/-101.1 micromol/l, P<0.01), as was glycerol (77.9+/-17.5 vs. 125.6+/-51.8 micromol/l, P<0.05). GLP-1 receptor gene expression was found using reverse transcriptase-polymerase chain reaction of poly(A)-selected RNA in muscle and adipose tissue, but not in liver. Low levels of GLP-1 receptor gene expression were also found in adipose tissue using Northern blotting. In 10 paired experiments with five dogs at the low insulin dose, GLP-1 infusion did not affect glucose utilization or FFA and glycerol suppression when compared with saline, suggesting that GLP-1's effect on insulin action was dependent on the insulin dose. In conclusion, in depancreatized dogs, GLP-1 potentiates insulin-stimulated glucose utilization, an effect that might be contributed in part by GLP-1 potentiation of insulin's antilipolytic action.
为了确定胰高血糖素样肽(GLP)-1除了刺激胰岛素分泌外是否还能增加胰岛素敏感性,我们研究了完全胰腺切除的犬,以消除GLP-1的肠促胰岛素效应。向犬体内输注生长抑素(0.8μg·kg⁻¹·min⁻¹)以抑制胰腺外胰高血糖素,通过门静脉内输注(0.65ng·kg⁻¹·min⁻¹)恢复基础胰高血糖素水平。为模拟2型糖尿病患者门静脉内残余的胰岛素分泌,给予基础门静脉内胰岛素输注以获得约10mmol/L的血浆葡萄糖浓度。在实验的剩余时间里,将葡萄糖浓度维持在该水平,实验包括外周胰岛素输注(高剂量,5.4pmol·kg⁻¹·min⁻¹,或低剂量,0.75pmol·kg⁻¹·min⁻¹),同时给予或不给予GLP-1(7-36)酰胺(1.5pmol·kg⁻¹·min⁻¹)。使用含放射性标记葡萄糖的输注液,通过3-[³H]葡萄糖测量葡萄糖的生成和利用。在6只犬进行的12对高胰岛素剂量的实验中,输注GLP-1比输注生理盐水需要更高的葡萄糖量(60.9±11.0对43.6±8.3μmol·kg⁻¹·min⁻¹,P<0.001),这是因为葡萄糖利用增加(72.6±11.0对56.8±9.7μmol·kg⁻¹·min⁻¹,P<0.001),而GLP-1对葡萄糖生成的抑制作用未受影响。与生理盐水相比,GLP-1组的游离脂肪酸(FFA)显著降低(375.3±103.0对524.4±101.1μmol/L,P<0.01),甘油水平也降低(77.9±17.5对125.6±51.8μmol/L,P<0.05)。使用从肌肉和脂肪组织中选取的poly(A)RNA进行逆转录聚合酶链反应,发现了GLP-1受体基因表达,但在肝脏中未发现。使用Northern印迹法也在脂肪组织中发现了低水平的GLP-1受体基因表达。在5只犬进行的10对低胰岛素剂量的实验中,与生理盐水相比,输注GLP-1对葡萄糖利用或FFA及甘油的抑制作用无影响,这表明GLP-1对胰岛素作用的影响取决于胰岛素剂量。总之,在胰腺切除的犬中,GLP-1增强胰岛素刺激的葡萄糖利用,这一作用可能部分归因于GLP-1增强了胰岛素的抗脂解作用。