Bashir A, Gray M L, Hartke J, Burstein D
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, USA.
Magn Reson Med. 1999 May;41(5):857-65. doi: 10.1002/(sici)1522-2594(199905)41:5<857::aid-mrm1>3.0.co;2-e.
Despite the compelling need mandated by the prevalence and morbidity of degenerative cartilage diseases, it is extremely difficult to study disease progression and therapeutic efficacy, either in vitro or in vivo (clinically). This is partly because no techniques have been available for nondestructively visualizing the distribution of functionally important macromolecules in living cartilage. Here we describe and validate a technique to image the glycosaminoglycan concentration ([GAG]) of human cartilage nondestructively by magnetic resonance imaging (MRI). The technique is based on the premise that the negatively charged contrast agent gadolinium diethylene triamine pentaacetic acid (Gd(DTPA)2-) will distribute in cartilage in inverse relation to the negatively charged GAG concentration. Nuclear magnetic resonance spectroscopy studies of cartilage explants demonstrated that there was an approximately linear relationship between T1 (in the presence of Gd(DTPA)2-) and [GAG] over a large range of [GAG]. Furthermore, there was a strong agreement between the [GAG] calculated from [Gd(DTPA)2-] and the actual [GAG] determined from the validated methods of calculations from [Na+] and the biochemical DMMB assay. Spatial distributions of GAG were easily observed in T1-weighted and T1-calculated MRI studies of intact human joints, with good histological correlation. Furthermore, in vivo clinical images of T1 in the presence of Gd(DTPA)2- (i.e., GAG distribution) correlated well with the validated ex vivo results after total knee replacement surgery, showing that it is feasible to monitor GAG distribution in vivo. This approach gives us the opportunity to image directly the concentration of GAG, a major and critically important macromolecule in human cartilage.
尽管退行性软骨疾病的患病率和发病率迫切需要开展相关研究,但无论是在体外还是体内(临床)研究疾病进展和治疗效果都极为困难。部分原因在于,目前尚无技术可用于无损可视化活软骨中功能重要的大分子的分布情况。在此,我们描述并验证了一种通过磁共振成像(MRI)无损成像人体软骨中糖胺聚糖浓度([GAG])的技术。该技术基于这样一个前提,即带负电荷的造影剂钆二乙三胺五乙酸(Gd(DTPA)₂⁻)在软骨中的分布与带负电荷的GAG浓度呈反比关系。对软骨外植体的核磁共振波谱研究表明,在较大的[GAG]范围内,T1(在Gd(DTPA)₂⁻存在下)与[GAG]之间存在近似线性关系。此外,根据[Gd(DTPA)₂⁻]计算得出的[GAG]与通过基于[Na⁺]的经验证计算方法和生化DMMB测定法确定的实际[GAG]之间具有高度一致性。在完整人体关节的T1加权和T1计算MRI研究中,很容易观察到GAG的空间分布,且与组织学结果具有良好的相关性。此外,在钆喷酸葡胺(Gd(DTPA)₂⁻)存在下的T1体内临床图像(即GAG分布)与全膝关节置换术后经验证的体外结果具有良好的相关性,表明在体内监测GAG分布是可行的。这种方法使我们有机会直接成像GAG的浓度,GAG是人体软骨中的一种主要且至关重要的大分子。