Brem R, Dill K A
Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-1204, USA.
Protein Sci. 1999 May;8(5):1134-43. doi: 10.1110/ps.8.5.1134.
A popular approach to the computational modeling of ligand/receptor interactions is to use an empirical free energy like model with adjustable parameters. Parameters are learned from one set of complexes, then used to predict another set. To improve these empirical methods requires an independent way to study their inherent errors. We introduce a toy model of ligand/receptor binding as a workbench for testing such errors. We study the errors incurred from the two state binding assumption--the assumption that a ligand is either bound in one orientation, or unbound. We find that the two state assumption can cause large errors in free energy predictions, but it does not affect rank order predictions significantly. We show that fitting parameters using data from high affinity ligands can reduce two state errors; so can using more physical models that do not use the two state assumption. We also find that when using two state models to predict free energies, errors are more severe on high affinity ligands than low affinity ligands. And we show that two state errors can be diagnosed by systematically adding new binding modes when predicting free energies: if predictions worsen as the modes are added, then the two state assumption in the fitting step may be at fault.
一种用于配体/受体相互作用计算建模的常用方法是使用具有可调参数的经验自由能类模型。参数从一组复合物中学习,然后用于预测另一组。要改进这些经验方法需要一种独立的方式来研究其固有误差。我们引入一个配体/受体结合的简化模型作为测试此类误差的平台。我们研究了二态结合假设所产生的误差——即配体要么以一种取向结合,要么未结合的假设。我们发现二态假设会在自由能预测中导致较大误差,但对排序预测的影响不大。我们表明,使用来自高亲和力配体的数据拟合参数可以减少二态误差;不使用二态假设的更多物理模型也可以。我们还发现,当使用二态模型预测自由能时,高亲和力配体的误差比低亲和力配体更严重。并且我们表明,在预测自由能时通过系统地添加新的结合模式可以诊断二态误差:如果随着模式的添加预测变差,那么拟合步骤中的二态假设可能有问题。