Suppr超能文献

具有缺失协变量的广义线性模型的最大似然分析。

Maximum likelihood analysis of generalized linear models with missing covariates.

作者信息

Horton N J, Laird N M

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Stat Methods Med Res. 1999 Mar;8(1):37-50. doi: 10.1177/096228029900800104.

Abstract

Missing data is a common occurrence in most medical research data collection enterprises. There is an extensive literature concerning missing data, much of which has focused on missing outcomes. Covariates in regression models are often missing, particularly if information is being collected from multiple sources. The method of weights is an implementation of the EM algorithm for general maximum-likelihood analysis of regression models, including generalized linear models (GLMs) with incomplete covariates. In this paper, we will describe the method of weights in detail, illustrate its application with several examples, discuss its advantages and limitations, and review extensions and applications of the method.

摘要

在大多数医学研究数据收集工作中,数据缺失是常见现象。关于数据缺失存在大量文献,其中许多聚焦于缺失的结果。回归模型中的协变量常常缺失,尤其是当信息从多个来源收集时。加权法是用于回归模型(包括具有不完整协变量的广义线性模型(GLMs))的一般最大似然分析的EM算法的一种实现方式。在本文中,我们将详细描述加权法,通过几个例子说明其应用,讨论其优点和局限性,并回顾该方法的扩展和应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验