Suppr超能文献

相似文献

1
Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference.
Stat Sin. 2018 Oct;28(4):2069-2088. doi: 10.5705/ss.202016.0325.
3
On Inverse Probability Weighting for Nonmonotone Missing at Random Data.
J Am Stat Assoc. 2018;113(521):369-379. doi: 10.1080/01621459.2016.1256814. Epub 2017 Dec 1.
4
A self-censoring model for multivariate nonignorable nonmonotone missing data.
Biometrics. 2023 Dec;79(4):3203-3214. doi: 10.1111/biom.13916. Epub 2023 Jul 24.
5
Semiparametric Estimation with Data Missing Not at Random Using an Instrumental Variable.
Stat Sin. 2018 Oct;28(4):1965-1983. doi: 10.5705/ss.202016.0324.
6
Statistical inference for missing data mechanisms.
Stat Med. 2020 Dec 10;39(28):4325-4333. doi: 10.1002/sim.8727. Epub 2020 Aug 19.
7
Identification and inference with nonignorable missing covariate data.
Stat Sin. 2018 Oct;28(4):2049-2067. doi: 10.5705/ss.202016.0322.
8
Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data.
Am J Epidemiol. 2018 Mar 1;187(3):585-591. doi: 10.1093/aje/kwx350.
9
Semiparametric Inference for Nonmonotone Missing-Not-at-Random Data: The No Self-Censoring Model.
J Am Stat Assoc. 2022;117(539):1415-1423. doi: 10.1080/01621459.2020.1862669. Epub 2021 Feb 3.
10
A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness.
Biometrics. 2009 Mar;65(1):81-7. doi: 10.1111/j.1541-0420.2008.01021.x. Epub 2008 Mar 29.

引用本文的文献

1
Analysis of Missingness Scenarios for Observational Health Data.
J Pers Med. 2024 May 11;14(5):514. doi: 10.3390/jpm14050514.
2
Semiparametric Inference for Nonmonotone Missing-Not-at-Random Data: The No Self-Censoring Model.
J Am Stat Assoc. 2022;117(539):1415-1423. doi: 10.1080/01621459.2020.1862669. Epub 2021 Feb 3.
3
Identifiability of causal effects with multiple causes and a binary outcome.
Biometrika. 2022 Mar;109(1):265-272. doi: 10.1093/biomet/asab016. Epub 2021 Mar 12.
6
Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes.
Psychometrika. 2020 Dec;85(4):890-904. doi: 10.1007/s11336-020-09729-y. Epub 2020 Oct 2.
7
Bayesian Approaches for Missing Not at Random Outcome Data: The Role of Identifying Restrictions.
Stat Sci. 2018 May;33(2):198-213. doi: 10.1214/17-STS630. Epub 2018 May 3.
9
Sensitivity analysis for non-monotone missing binary data in longitudinal studies: Application to the NIDA collaborative cocaine treatment study.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3057-3073. doi: 10.1177/0962280218794725. Epub 2018 Aug 27.

本文引用的文献

1
On Inverse Probability Weighting for Nonmonotone Missing at Random Data.
J Am Stat Assoc. 2018;113(521):369-379. doi: 10.1080/01621459.2016.1256814. Epub 2017 Dec 1.
3
Highly active antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana.
J Infect Dis. 2012 Dec 1;206(11):1695-705. doi: 10.1093/infdis/jis553. Epub 2012 Oct 12.
4
On doubly robust estimation in a semiparametric odds ratio model.
Biometrika. 2010 Mar;97(1):171-180. doi: 10.1093/biomet/asp062. Epub 2009 Dec 8.
5
A Review of Hot Deck Imputation for Survey Non-response.
Int Stat Rev. 2010 Apr;78(1):40-64. doi: 10.1111/j.1751-5823.2010.00103.x.
6
A semiparametric odds ratio model for measuring association.
Biometrics. 2007 Jun;63(2):413-21. doi: 10.1111/j.1541-0420.2006.00701.x.
7
Stochastic algorithms for Markov models estimation with intermittent missing data.
Biometrics. 1999 Jun;55(2):565-73. doi: 10.1111/j.0006-341x.1999.00565.x.
8
A transitional model for longitudinal binary data subject to nonignorable missing data.
Biometrics. 2000 Jun;56(2):602-8. doi: 10.1111/j.0006-341x.2000.00602.x.
9
Maximum likelihood analysis of generalized linear models with missing covariates.
Stat Methods Med Res. 1999 Mar;8(1):37-50. doi: 10.1177/096228029900800104.
10
Comparison of several model-based methods for analysing incomplete quality of life data in cancer clinical trials.
Stat Med. 1998;17(5-7):781-96. doi: 10.1002/(sici)1097-0258(19980315/15)17:5/7<781::aid-sim821>3.0.co;2-o.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验