Suppr超能文献

具有不完全协变量数据和辅助信息的逻辑回归模型的最大似然分析。

Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information.

作者信息

Horton N J, Laird N M

机构信息

Department of Epidemiology and Biostatistics, Boston University School of Public Health, Massachusetts 02118, USA.

出版信息

Biometrics. 2001 Mar;57(1):34-42. doi: 10.1111/j.0006-341x.2001.00034.x.

Abstract

This article presents a new method for maximum likelihood estimation of logistic regression models with incomplete covariate data where auxiliary information is available. This auxiliary information is extraneous to the regression model of interest but predictive of the covariate with missing data. Ibrahim (1990, Journal of the American Statistical Association 85, 765-769) provides a general method for estimating generalized linear regression models with missing covariates using the EM algorithm that is easily implemented when there is no auxiliary data. Vach (1997, Statistics in Medicine 16, 57-72) describes how the method can be extended when the outcome and auxiliary data are conditionally independent given the covariates in the model. The method allows the incorporation of auxiliary data without making the conditional independence assumption. We suggest tests of conditional independence and compare the performance of several estimators in an example concerning mental health service utilization in children. Using an artificial dataset, we compare the performance of several estimators when auxiliary data are available.

摘要

本文提出了一种针对协变量数据不完整的逻辑回归模型进行最大似然估计的新方法,其中可获取辅助信息。该辅助信息与感兴趣的回归模型无关,但可预测存在缺失数据的协变量。易卜拉欣(1990年,《美国统计协会杂志》85卷,第765 - 769页)提供了一种使用期望最大化(EM)算法估计具有缺失协变量的广义线性回归模型的通用方法,当没有辅助数据时该方法易于实现。瓦赫(1997年,《医学统计学》16卷,第57 - 72页)描述了在给定模型中的协变量时,若结果与辅助数据条件独立,该方法如何扩展。该方法允许纳入辅助数据而无需做出条件独立假设。我们建议进行条件独立性检验,并在一个关于儿童心理健康服务利用情况的示例中比较几种估计量的性能。使用一个人工数据集,我们比较了有辅助数据时几种估计量的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验