Suppr超能文献

果蝇检测结果作为接触致癌物指标的情况。

The results of assays in Drosophila as indicators of exposure to carcinogens.

作者信息

Vogel E W, Graf U, Frei H J, Nivard M M

机构信息

Medical Genetics Centre South-West Netherlands-MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden, The Netherlands.

出版信息

IARC Sci Publ. 1999(146):427-70.

Abstract

Drosophila has fulfilled a dual function in the field of genetic toxicology: for use in short-term tests for identifying carcinogens and in a model for studies of the mechanisms of mutagenesis by chemicals. Until the mid-1980s, use of Drosophila in short-term tests was restricted to assays for genetic damage in germ cells, mostly in males. The largest database, on 700-750 chemicals, is available for the test for sex-linked recessive lethal (SLRL) forward mutation. The database for assays of the consequences of chromosomal breakage--reciprocal translocations and chromosome loss--is smaller, with about 100 chemicals tested. Comparative studies conducted within the US National Toxicology Program showed that SLRL is a better end-point than reciprocal translocation: of 66 chemicals (68 entries) that induced SLRL, only 28 (41%) induced reciprocal translocation. The major weakness of the SLRL assay is its low sensitivity (0.27-0.79) for mammalian genotoxins. A strength of the SLRL mutation test is its high specificity, which is close to 1. Thus, whereas a negative response in Drosophila provides little evidence for genotoxicity, a positive response (SLRL frequency > or = five times the control level) provides good evidence that a chemical is a trans-species mutagen and probably also carcinogenic to mammals. The poor performance of the SLRL test revealed in several collaborative studies led to the development of assays for recombination in somatic cells of Drosophila. Two of these tests have been evaluated for all known classes of genotoxic chemical: the mwh/flr wing spot test on more than 400 chemicals and the white/white+ eye spot test on about 220 chemicals. Of 24 carcinogens that gave negative or inconclusive test results in the SLRL assay, 22 gave positive results in one or both of the somatic systems. Their better performance in comparison with the germ-line assays is primarily the result of their low cost (5-10% of that needed for an SLRL assay), allowing use of multiple doses and protocols and the use of distinct tester strains with heterogeneity for activation of procarcinogens. For qualitative and quantitative studies on structure-activity and activity-activity relationship, only germ-line system have been used. In general, clear relationships between physico-chemical parameters (s values, O6/N7-alkylguanine ratios), carcinogenic potency in rodents and several descriptors of genotoxic activity in germ cells (from mice and Drosophila) became apparent when the following descriptors were used: (1) estimates of TD50 (lifetime doses expressed in milligrams per kilogram body weight or millimoles per kilogram body weight) from bioassays for cancer in rodents; (2) the degree of germ-cell specificity, i.e. the ability of a genotoxic agent to induce mutations at practically any stage of development of Drosophila and mouse spermatogenesis, as opposed to a more specific response in postmeiotic stages of both species; (3) the M(NER-)/M(NER+) hypermutability ratio, determined in a repair assay in Drosophila germ cells; (4) the ratio of chromosomal aberrations to SLRL in postmeiotic germ cells of Drosophila, i.e. the comparative efficiency of a carcinogen to induce these two end-points; (5) mutational spectra induced at single loci, i.e. the seven loci used in the specific-locus test in mice and the vermilion, white and rosy genes of Drosophila; and (6) the doubling doses in milligrams or millimoles per kilogram for specific locus induction in mice. On the basis of these parameters, alkylating agents were classified into three categories in terms of germ-cell specificity, which is primarily due to stage-related differences in DNA repair, clastogenic efficiency, type of mutation spectra and carcinogenic potency in rodents. The three categories allow predictions of the genotoxicity of alkylating agents but not yet for other categories of genotoxic carcinogens.

摘要

果蝇在遗传毒理学领域发挥了双重作用

用于鉴定致癌物的短期试验以及作为研究化学物质诱变机制的模型。直到20世纪80年代中期,果蝇在短期试验中的应用仅限于生殖细胞遗传损伤检测,主要是雄性生殖细胞。关于700 - 750种化学物质的最大数据库可用于性连锁隐性致死(SLRL)正向突变试验。关于染色体断裂后果(相互易位和染色体丢失)检测的数据库较小,大约测试了100种化学物质。在美国国家毒理学计划内进行的比较研究表明,SLRL作为终点指标比相互易位更好:在66种(68项记录)诱导SLRL的化学物质中,只有28种(41%)诱导了相互易位。SLRL试验的主要弱点是其对哺乳动物基因毒素的敏感性较低(0.27 - 0.79)。SLRL突变试验的一个优点是其高特异性,接近1。因此,虽然果蝇中的阴性反应几乎不能提供基因毒性的证据,但阳性反应(SLRL频率≥对照水平的五倍)则有力地证明一种化学物质是跨物种诱变剂,并且可能对哺乳动物也具有致癌性。在几项合作研究中揭示的SLRL试验的不佳表现促使人们开发了果蝇体细胞重组试验。其中两项试验已针对所有已知类别的基因毒性化学物质进行了评估:对400多种化学物质进行的mwh/flr翅斑试验以及对约220种化学物质进行的white/white + 眼斑试验。在SLRL试验中给出阴性或不确定试验结果的24种致癌物中,有22种在一个或两个体细胞系统中给出了阳性结果。与生殖细胞试验相比,它们表现更好主要是因为成本低(仅为SLRL试验所需成本的5 - 10%),这使得可以使用多种剂量和方案,并使用具有不同异质性的测试菌株来激活前致癌物。对于结构 - 活性和活性 - 活性关系的定性和定量研究,仅使用了生殖细胞系统。一般来说,当使用以下描述符时,物理化学参数(s值、O6/N7 - 烷基鸟嘌呤比率)、啮齿动物致癌效力以及生殖细胞中基因毒性活性的几个描述符(来自小鼠和果蝇)之间的明确关系变得明显:(1)来自啮齿动物癌症生物测定的TD50估计值(以每千克体重毫克数或每千克体重毫摩尔数表示的终身剂量);(2)生殖细胞特异性程度,即一种基因毒性剂在果蝇和小鼠精子发生发育的几乎任何阶段诱导突变的能力,与这两个物种减数分裂后阶段更特异性的反应相反;(3)在果蝇生殖细胞修复试验中确定的M(NER - )/M(NER + )超突变率;(4)果蝇减数分裂后生殖细胞中染色体畸变与SLRL的比率,即致癌物诱导这两个终点的相对效率;(5)在单个位点诱导的突变谱,即小鼠特定位点试验中使用的七个位点以及果蝇的朱红眼、白眼和玫瑰色基因;(6)小鼠特定位点诱导的每千克毫克数或毫摩尔数的加倍剂量。基于这些参数,烷基化剂根据生殖细胞特异性分为三类,这主要是由于DNA修复、断裂剂效率、突变谱类型和啮齿动物致癌效力方面与阶段相关的差异。这三类可以预测烷基化剂的基因毒性,但尚未能预测其他类别的基因毒性致癌物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验