Vogel E W, Nivard M J, Ballering L A, Bartsch H, Barbin A, Nair J, Comendador M A, Sierra L M, Aguirrezabalaga I, Tosal L, Ehrenberg L, Fuchs R P, Janel-Bintz R, Maenhaut-Michel G, Montesano R, Hall J, Kang H, Miele M, Thomale J, Bender K, Engelbergs J, Rajewsky M F
Department of Radiation Genetics and Chemical Mutagenesis, Medical Genetics Centre South-West Netherlands (MGC), University of Leiden (RUL), Netherlands.
Mutat Res. 1996 Jun 12;353(1-2):177-218. doi: 10.1016/0027-5107(96)00032-2.
Previous studies on structure-activity relationships (SARs) between types of DNA modifications and tumour incidence revealed linear positive relationships between the log TD50 estimates and s-values for a series of mostly monofunctional alkylating agents. The overall objective of this STEP project was to further elucidate the mechanistic principles underlying these correlations, because detailed knowledge on mechanisms underlying the formation of genotoxic damage is an absolute necessity for establishing guidance values for exposures to genotoxic agents. The analysis included: (1) the re-calculation and further extension of TD50 values in mmol/kg body weight for chemicals carcinogenic in rodents. This part further included the checking up data for Swain-Scott s-values and the use of the covalent binding index (CBI); (2) the elaboration of genetic toxicity including an analysis of induced mutation spectra in specific genes at the DNA level, i.e., the vermilion gene of Drosophila, a plasmid system (pX2 assay) and the HPRT gene in cultured mammalian cells (CHO-9); and (3) the measurement of specific DNA alkylation adducts in animal models (mouse, rat, hamster) and mammalian cells in culture. The analysis of mechanisms controlling the expression of mammalian DNA repair genes (alkyltransferases, glycosylases) as a function of the cell type, differentiation stage, and cellular microenvironment in mammalian cells. The 3 classes of genotoxic carcinogens selected for the project were: (1) chemicals forming monoalkyl adducts upon interaction with DNA; (2) genotoxins capable of forming DNA etheno-adducts; and (3) N-substituted aryl compounds forming covalent adducts at the C8 position of guanine in DNA. In general, clear SARs and AARs (activity-activity relationships) between physiochemical parameters (s-values, O6/N7-alkylguanine ratios, CBI), carcinogenic potency in rodents and several descriptors of genotoxic activity in germ cells (mouse, Drosophila) became apparent when the following descriptors were used: TD50 estimates (lifetime doses expressed in mg/kg b.wt. or mmol/kg b.wt.) from cancer bioassays in rodents; the degree of germ-cell specificity, i.e., the ability of a genotoxic agent to induce mutations in practically all cell stages of the male germ-cell cycle of Drosophila (this project) and the mouse (literature search), as opposed to a more specific response in postmeiotic stages of both species; the Mexr-/Mexr+ hypermutability ratio, determined in a repair assay utilizing Drosophila germ cells; mutation spectra induced at single loci (the 7 loci used in the specific-locus test of the mouse (published data), and the vermilion gene of Drosophila); and doubling doses (DD) in mg/kg (mmol/kg) for specific locus test results on mice. By and large, the TD50 values, the inverse of which can be considered as measures of carcinogenic potency, were shown to be predictable from knowledge of the in vivo doses associated with the absorbed amounts of the investigated alkylators and with the second-order constant, kc, reaction at a critical nucleophilic strength, nc. For alkylating agents kc can be expressed as the second-order rate constant for hydrolysis, kH2O, and the substrate constant s:kH2OTD50 is a function of a certain accumulated degree of alkylation, here given as the (average) daily increment, ac, for 2 years exposure of the rodents. The TD*50 in mmol/kg x day) could then be written: [formula: see text] This expression would be valid for monofunctional alkylators provided the reactive species are uncharged. This is the case for most SN2 reagents. Although it appears possible to predict carcinogenic potency from measured in vivo doses and from detailed knowledge of reaction-kinetic parameter values, it is at present not possible to quantify the uncertainty of such predictions. One main reason for this is the complication due to uneven distribution in the body, with effects on the dose in target tissues. The estimation can be impro
先前关于DNA修饰类型与肿瘤发生率之间构效关系(SARs)的研究表明,对于一系列大多为单功能烷基化剂,log TD50估计值与s值之间呈线性正相关。本STEP项目的总体目标是进一步阐明这些相关性背后的机制原理,因为对于确定遗传毒性剂暴露的指导值而言,深入了解遗传毒性损伤形成的机制是绝对必要的。分析内容包括:(1)重新计算并进一步扩展以mmol/kg体重为单位的啮齿动物致癌化学物质的TD50值。这部分还包括检查Swain-Scott s值的数据以及使用共价结合指数(CBI);(2)阐述遗传毒性,包括在DNA水平上分析特定基因(即果蝇的朱红眼基因、质粒系统(pX2试验)和培养的哺乳动物细胞(CHO-9)中的HPRT基因)中的诱导突变谱;(3)测量动物模型(小鼠、大鼠、仓鼠)和培养的哺乳动物细胞中的特定DNA烷基化加合物。分析哺乳动物细胞中DNA修复基因(烷基转移酶、糖基化酶)的表达调控机制,作为细胞类型、分化阶段和细胞微环境的函数。为该项目选择的3类遗传毒性致癌物为:(1)与DNA相互作用时形成单烷基加合物的化学物质;(2)能够形成DNA乙烯基加合物的遗传毒素;(3)在DNA中鸟嘌呤的C8位置形成共价加合物的N-取代芳基化合物。总体而言,当使用以下描述符时,物理化学参数(s值、O6/N7-烷基鸟嘌呤比率、CBI)、啮齿动物致癌效力与生殖细胞中几种遗传毒性活性描述符(小鼠、果蝇)之间清晰的构效关系和活性-活性关系(AARs)变得明显:来自啮齿动物癌症生物测定的TD50估计值(以mg/kg体重或mmol/kg体重表示的终身剂量);生殖细胞特异性程度,即遗传毒性剂在果蝇(本项目)和小鼠(文献检索)雄性生殖细胞周期的几乎所有细胞阶段诱导突变的能力,与两种物种减数分裂后阶段更特异性的反应相反;在利用果蝇生殖细胞的修复试验中确定的Mexr-/Mexr+超突变率;在单个位点诱导的突变谱(小鼠特定位点试验中使用的7个位点(已发表数据)以及果蝇的朱红眼基因);以及小鼠特定位点试验结果的mg/kg(mmol/kg)加倍剂量(DD)。总的来说,TD50值的倒数可被视为致癌效力的度量,已表明可根据与所研究烷基化剂吸收量相关的体内剂量以及与临界亲核强度nc处的二级常数kc反应的知识来预测。对于烷基化剂,kc可表示为水解的二级速率常数kH2O和底物常数s:kH2OTD50是一定累积烷基化程度的函数,此处表示为啮齿动物2年暴露的(平均)每日增量ac。然后以mmol/kg·天为单位的TD*50可写为:[公式:见原文] 只要反应物种不带电荷,该表达式对于单功能烷基化剂就是有效的。大多数SN2试剂就是这种情况。尽管似乎可以根据测量的体内剂量和反应动力学参数值的详细知识来预测致癌效力,但目前尚无法量化此类预测的不确定性。造成这种情况的一个主要原因是由于体内分布不均导致的复杂性,这会影响靶组织中的剂量。估计可以改进