Suppr超能文献

脂质通过连接不同张力膜的融合孔流动。

Lipid flow through fusion pores connecting membranes of different tensions.

作者信息

Chizmadzhev Y A, Kumenko D A, Kuzmin P I, Chernomordik L V, Zimmerberg J, Cohen F S

机构信息

Frumkin Institute of Electrochemistry, Moscow, Russia.

出版信息

Biophys J. 1999 Jun;76(6):2951-65. doi: 10.1016/S0006-3495(99)77450-3.

Abstract

When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores.

摘要

当两个膜融合时,它们的成分会混合;这通常被描述为一个纯粹的扩散过程。然而,如果膜处于不同的张力下,物质将主要通过对流扩散。我们使用标准流体力学来严格计算脂质的稳态对流通量。融合孔被建模为环形,连接两个平面膜。每个膜单层分别被视为具有相同剪切粘度ηs的不可压缩粘性介质。两个单层通过相互滑动相互作用,由层间粘度ηr描述。将连续性方程与一个平衡张力差Δσ提供的功与粘性膜中流动耗散的能量的方程相结合,得出脂质速度υ和脂质通量面积Φ的表达式。这些关于υ和Φ的表达式取决于Δσ、ηs、ηr以及环形孔的几何形状,但该理论的一般特征适用于任何大致呈沙漏形状的融合孔。这些表达式很容易应用于任何监测不同张力下融合膜之间脂质染料移动的实验数据。脂质速度从小孔半径rp较小时的小值非线性增加到大rp时的饱和值。由于速度饱和,对于大孔,通量随孔半径线性增加。计算出的脂质通量与大融合孔和瞬态融合孔的现有实验数据一致。

相似文献

1
Lipid flow through fusion pores connecting membranes of different tensions.
Biophys J. 1999 Jun;76(6):2951-65. doi: 10.1016/S0006-3495(99)77450-3.
2
Forces and stresses acting on fusion pore membrane during secretion.
Biochim Biophys Acta. 2009 May;1788(5):1009-23. doi: 10.1016/j.bbamem.2009.01.019. Epub 2009 Feb 11.
3
Dynamics of fusion pores connecting membranes of different tensions.
Biophys J. 2000 May;78(5):2241-56. doi: 10.1016/S0006-3495(00)76771-3.
6
Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062701. doi: 10.1103/PhysRevE.88.062701. Epub 2013 Dec 2.
7
Intermonolayer friction and surface shear viscosity of lipid bilayer membranes.
Biophys J. 2007 Jul 15;93(2):423-33. doi: 10.1529/biophysj.107.105395. Epub 2007 Apr 27.
9
Membrane fusion: stalk model revisited.
Biophys J. 2002 Feb;82(2):693-712. doi: 10.1016/S0006-3495(02)75432-5.
10
Stalk model of membrane fusion: solution of energy crisis.
Biophys J. 2002 Feb;82(2):882-95. doi: 10.1016/S0006-3495(02)75450-7.

引用本文的文献

1
Coordination of force-generating actin-based modules stabilizes and remodels membranes in vivo.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202401091. Epub 2024 Aug 22.
2
The yellow brick road to nuclear membrane mechanotransduction.
APL Bioeng. 2022 Mar 25;6(2):021501. doi: 10.1063/5.0080371. eCollection 2022 Jun.
3
Components and Mechanisms of Nuclear Mechanotransduction.
Annu Rev Cell Dev Biol. 2021 Oct 6;37:233-256. doi: 10.1146/annurev-cellbio-120319-030049. Epub 2021 Jul 2.
4
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models.
Nat Commun. 2020 Jun 11;11(1):2951. doi: 10.1038/s41467-020-16424-0.
5
Visualization of expanding fusion pores in secretory cells.
J Gen Physiol. 2018 Dec 3;150(12):1640-1646. doi: 10.1085/jgp.201812186. Epub 2018 Nov 23.
6
SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle.
EMBO J. 2018 Oct 1;37(19). doi: 10.15252/embj.201899193. Epub 2018 Aug 17.
8
Fusion pores and their control of neurotransmitter and hormone release.
J Gen Physiol. 2017 Mar 6;149(3):301-322. doi: 10.1085/jgp.201611724. Epub 2017 Feb 6.
9
Computational estimates of membrane flow and tension gradient in motile cells.
PLoS One. 2014 Jan 17;9(1):e84524. doi: 10.1371/journal.pone.0084524. eCollection 2014.
10
Multiple roles for the actin cytoskeleton during regulated exocytosis.
Cell Mol Life Sci. 2013 Jun;70(12):2099-121. doi: 10.1007/s00018-012-1156-5. Epub 2012 Sep 18.

本文引用的文献

1
Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores.
J Gen Physiol. 1998 Oct;112(4):409-22. doi: 10.1085/jgp.112.4.409.
2
Regulation of exocytotic fusion by cell inflation.
Biophys J. 1998 Feb;74(2 Pt 1):1061-73. doi: 10.1016/S0006-3495(98)74030-5.
4
Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers.
Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14423-8. doi: 10.1073/pnas.94.26.14423.
5
Golgi tubule traffic and the effects of brefeldin A visualized in living cells.
J Cell Biol. 1997 Dec 1;139(5):1137-55. doi: 10.1083/jcb.139.5.1137.
6
Optical detection of a quantal presynaptic membrane turnover.
Nature. 1997 Jul 31;388(6641):478-82. doi: 10.1038/41335.
8
Virus-cell and cell-cell fusion.
Annu Rev Cell Dev Biol. 1996;12:627-61. doi: 10.1146/annurev.cellbio.12.1.627.
9
Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation.
Biophys J. 1996 Sep;71(3):1374-88. doi: 10.1016/S0006-3495(96)79340-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验