Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
National Institutes of Health, Bethesda, MD 20892, USA.
Bioessays. 2018 Sep;40(9):e1800032. doi: 10.1002/bies.201800032. Epub 2018 Aug 6.
The remodeling of biological membranes is crucial for a vast number of cellular activities and is an inherently multiscale process in both time and space. Seminal work has provided important insights into nanometer-scale membrane deformations, and highlighted the remarkable variation and complexity in the underlying molecular machineries and mechanisms. However, how membranes are remodeled at the micron-scale, particularly in vivo, remains poorly understood. Here, we discuss how using regulated exocytosis of large (1.5-2.0 μm) membrane-bound secretory granules in the salivary gland of live mice as a model system, has provided evidence for the importance of the actomyosin cytoskeleton in micron-scale membrane remodeling in physiological conditions. We highlight some of these advances, and present mechanistic hypotheses for how the various biochemical and biophysical properties of distinct actomyosin networks may drive this process.
生物膜的重塑对于大量的细胞活动至关重要,并且在时间和空间上都是内在的多尺度过程。开创性的工作提供了对纳米级膜变形的重要见解,并强调了潜在分子机械和机制的显著变化和复杂性。然而,在微米尺度上,特别是在体内,膜是如何重塑的,仍然知之甚少。在这里,我们讨论了如何使用活小鼠唾液腺中大(1.5-2.0μm)膜结合分泌颗粒的调节胞吐作用作为模型系统,为肌动球蛋白细胞骨架在生理条件下微米尺度膜重塑中的重要性提供了证据。我们强调了其中的一些进展,并提出了机械假设,说明不同的肌动球蛋白网络的各种生化和物理特性如何驱动这一过程。